scholarly journals Characterization of K6Ta10.8O30 Microrods with Tetragonal Tungsten Bronze-Like Structure Obtained from Tailings from the Penouta Sn-Ta-Nb Deposit

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2289
Author(s):  
Belén Sotillo ◽  
Lorena Alcaraz ◽  
Félix A. López ◽  
Paloma Fernández

In this work, a deep characterization of the properties of K6Ta10.8O30 microrods has been performed. The starting material used to grow the microrods has been recovered from mining tailings coming from the Penouta Sn-Ta-Nb deposit, located in the north of Spain. The recovered material has been submitted to a thermal treatment to grow the microrods. Then, they have been characterized by scanning electron microscopy, X-ray diffraction, micro-Raman and micro-photoluminescence. The results of our study confirm that the K6Ta10.8O30 microrods have a tetragonal tungsten bronze-like crystal structure, which can be useful for ion-batteries and photocatalysis.

2020 ◽  
Vol 990 ◽  
pp. 144-148
Author(s):  
Suphada Srilai ◽  
Worapak Tanwongwal ◽  
Kobchai Onpecth ◽  
Thanapat Wongkitikun ◽  
Kollayut Panpiemrasda ◽  
...  

Zeolite X were successfully synthesized from bentonite from Lopburi province, in Thailand using the two-step of hydrothermal method under optimum condition without calcination. The first step of hydrothermal were obtained at 200 °C for 3 h to remove unreacted impurity minerals such as quartz and muscovite. The secondary step of hydrothermal were obtained at 90 °C for 120 h for synthesis of zeolite X. The characterization of zeolite X were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), and infrared spectroscopy (FT-IR), respectively. The crystal structure of product was determined as zeolite X by XRD. The morphology of SEM images for zeolite X is octahedral shape. FTIR spectra are in accordance with the other characterization results.


Author(s):  
Shigeo Horiuchi

It is known that, over a composition range in a Nb2-O5-WO3 system, the crystal structure of compounds is composed of subcells with tetragonal tungsten bronze ( TIB ) type.) Different models have however been reported for some of them. The crystals are usually prepared in sealed tubes and sometimes show different colours due to a reduction in spite of a definite starting composition. Moreover, they frequently include small domains, which make the structure analysis by x-ray diffraction very difficult. In the present study we examine a series of these compounds, prepared under various conditions, by a super-high-resolution, high-voltage electron microscope ( Hitachi 1250 ),in which the lattice fringes of 2.0 Å in width can be resolved at an accelerating voltage of 1 MV under an axial illumination with equipping a specimen goniometer.2)Fig.l is a crystal structure image of 4Nb2O5.9WO3. According to electron diffractions the lattice parameters are a=12.3, b=36.6 and c=3.94 Å (orthorhombic).


2016 ◽  
Vol 840 ◽  
pp. 48-51
Author(s):  
Muhammad Nor Azri Aziz ◽  
Johar Banjuraizah ◽  
Shing Fhan Khor ◽  
Zainal Arifin Ahmad

La0.8Sr0.2MO3+δ, (M=Mn, Fe, Cr, Co) ceramics were prepared by using solid state reaction method. All raw materials were mixed and ground using mortar. Homogenized powders were calcined at 900°C for three hour followed by grounding and uniaxial pressed at 100MPa. Compacted pellets were further pressed using cold isostatic pressing machine at 2600kg/m.s and sintered at 1300°C with heating rate 5°C/min for 4 hour. Crystal structure and phase transformation of sintered samples were obtained using X-ray diffraction. Density and porosity are measured by using Archimedes principle. The morphology of sintered samples is observed using scanning electron microscopy, while elemental analysis using the EDX.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2021 ◽  
pp. 1-6
Author(s):  
Mariana M. V. M. Souza ◽  
Alex Maza ◽  
Pablo V. Tuza

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


1989 ◽  
Vol 4 (6) ◽  
pp. 1320-1325 ◽  
Author(s):  
Q. X. Jia ◽  
W. A. Anderson

Effects of hydrofluoric acid (HF) treatment on the properties of Y–Ba–Cu–O oxides were investigated. No obvious etching of bulk Y–Ba–Cu–O and no degradation of zero resistance temperature were observed even though the oxides were placed into 49% HF solution for up to 20 h. Surface passivation of Y–Ba–Cu–O due to HF immersion was verified by subsequent immersion of Y–Ba–Cu–O in water. A thin layer of amorphous fluoride formed on the surface of the Y–Ba–Cu–O during HF treatment, which limited further reaction between Y–Ba–Cu–O and HF, and later reaction with water. Thin film Y–Ba–Cu–O was passivated by HF vapors and showed no degradation in Tc-zero after 30 min immersion in water. The properties of the surface layer of Y–Ba–Cu–O oxide after HF treatment are reported from Auger electron spectroscopy, x-ray diffraction, and scanning electron microscopy studies.


2021 ◽  
pp. 004051752110154
Author(s):  
Zhihui Qin ◽  
Shuyuan Zhao ◽  
Liu Liu ◽  
Zhaohe Shi ◽  
Longdi Cheng ◽  
...  

Degumming is the dominant method for insolating lignocellulosic fibers in textile applications. Traditional alkaline degumming (TAL), as a common method, requires a high-concentration alkali and has been a severe challenge to the environment. In the research reported here, the possibility of innovative jute degumming by organic solvents 1-2 propylene glycol and a combination of additive green oxygen (GO-OS) was studied. The results revealed that fibers could be extracted by this system (under condition of 0.9% GO-OS, 180°C, 120 min), and obtained fibers with higher breaking tenacity (7.1 cN/dtex), yield (65.7%), breaking elongation (2.87%) and residual gum (11.7%), which all meet the requirement of the relevant Chinese Textile National Standards. Notably, the required reaction time (120 min) of the GO-OS system was 180 min shorter than that of the TAL method. Furthermore, the modifications introduced by the degumming effect on physicochemical aspects were characterized and confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction. This study provides a promising degumming method for separating jute lignocellulose without acid and alkali consumption.


Sign in / Sign up

Export Citation Format

Share Document