scholarly journals Environmental Photocatalytic Degradation of Antidepressants with Solar Radiation: Kinetics, Mineralization, and Toxicity

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 632
Author(s):  
Nina Finčur ◽  
Daniela Šojić Merkulov ◽  
Predrag Putnik ◽  
Vesna Despotović ◽  
Nemanja Banić ◽  
...  

This work is focused on the kinetics, mineralization, and toxicological assessments of the antidepressant drug amitriptyline hydrochloride (AMI) in UV or solar illuminated aqueous suspensions of ZnO, TiO2 Degussa P25, and TiO2 Hombikat. ZnO was proven to be the most effective photocatalyst, and it was used for all further experiments under solar irradiation. The highest reaction rate was observed at 1.0 mg/mL of catalyst loading. In the investigated initial concentration range (0.0075–0.3000 mmol/L), the degradation rate of AMI increased with the increase of initial concentration in the investigated range. The effects of H2O2, (NH4)2S2O8, and KBrO3, acting as electron acceptors, along with molecular oxygen were also studied. By studying the effects of ethanol and NaI as a hydroxyl radical and hole scavenger, respectively, it was shown that the heterogeneous catalysis takes place mainly via free hydroxyl radicals. In the mineralization study, AMI photocatalytic degradation resulted in ~30% of total organic carbon (TOC) decrease after 240 min of irradiation; acetate and formate were produced as the organic intermediates; NH4+, NO3−, NO2− ions were detected as nitrogen byproducts. Toxicity assessment using different mammalian cell lines, showed that H-4-II-E was the most sensitive one.

2020 ◽  
Vol 301 ◽  
pp. 145-152 ◽  
Author(s):  
Faizah Yunus ◽  
Muhammad Syazwan Kassim ◽  
Syed Shahabuddin ◽  
Nur Rahimah Said ◽  
Siti Nor Atika Baharin

This investigation focused on the photocatalytic degradation of o2-chlorophenol in aqueous solution by using hexagonal boron nitride (h-BN) doped polypyrrole (PPy) composite under solar irradiation. The composite was prepared via in-situ oxidation polymerization method using FeCl3 as oxidation agent. The synthesized h-BN/PPy composite were comprehensively characterized using x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The photodegradation of 2-chlorophenol was performed under direct sunlight for 180 minutes with initial concentration (50-250 mg/L) and pH (3-9). h-BN/PPy composite efficiently degraded 2-chlorophenol (91.1%) with optimum conditions at pH 6 and 50 mg/L initial concentration compared to PPy and h-BN.


2013 ◽  
Vol 764 ◽  
pp. 284-292 ◽  
Author(s):  
Jaimin Vyas ◽  
Manish Mishra ◽  
Vimal Gandhi

The photocatalytic degradation (PCD) of three commercially textile dyes, namely Alizarin Cyanine Green G (ACG), Reactive Red 195 (RR195) and Reactive Black 5 (RB5) has been investigated using TiO2(Degussa P25) photocatalyst in aqueous solution under UV light. Experiments were conducted to optimize various parameters viz. amount of catalyst, initial concentration of dye and solution pH. Degradation of all the dyes was examined by using UV spectrophotometer. Photocatalytic degradation increased with increasing TiO2loading (in the range 0.51.5 g/L) and decreasing with increasing dye concentration (in the range 20-100 mg/L) and solution pH (in the range 4-10). Result demonstrated that the reactivity of the three dyes for TiO2catalyzed PCD was as follows: Reactive Red 195>Reactive Black 5>Alizarin cyanine Green G, respectively.


2020 ◽  
Vol 82 (12) ◽  
pp. 2837-2846
Author(s):  
Farid Aoudjit ◽  
Fouzia Touahra ◽  
Lamine Aoudjit ◽  
Ouiza Cherifi ◽  
Djamilla Halliche

Abstract This study focuses on the synthesis of various nanocomposites with heterojunction structures, MgAl-LDH (LDH = layered double hydroxides) hybrid with semiconductor such as MoO3 and CuO. These solids were synthesized by co-precipitation method at constant pH and have been characterized extensively using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and transmission electron microscopy-energy dispersive X-ray (TEM-EDX) methods. The catalytic activity of nanocomposites was tested in the photocatalytic degradation under solar irradiation of emerging pollutants as the pharmaceutical metronidazole (MNZ). The experimental parameters, including initial MNZ concentration, the nature of oxide incorporate in the photocatalyst, catalyst loading were explored. All the synthesized samples showed high photocatalytic performances; the highest photocatalysis efficiency was achieved with the photocatalyst dose 1.5 g/L and initial MNZ concentration of 10 mg/L at neutral pH. The photocatalytic experimental results were fitted very well to the Langmuir-Hinshelwood model. From the obtained results the calcined LDH/semiconductors could be efficient for the photocatalytic process under solar irradiation of pharmaceuticals and may contribute in environmental remediation.


2012 ◽  
Vol 535-537 ◽  
pp. 2220-2223 ◽  
Author(s):  
Xing Jin ◽  
Jin Lan Lian ◽  
Yu Qiao

Lanthanum doping TiO2 powders were prepared using sol-gel method, and characterized by XRD. The doping quantity, time of solar irradiation and the added quantity of catalyst were investigated for the influence on the photocatalytic degradation of bisphenol A. The results show the structure of La3+ doped TiO2 powders were anatase, particle size were 16 nm. For the initial concentration of bisphenol A solution were 50 mg/L , when the doping quantity of La were 1.0 wt %, the dosing quantity of TiO2 were3.6 g/L, PH value were acid, irradiation time were 2 h, the photocatalytic activity of TiO2 was the best.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Priti A. Mangrulkar ◽  
Sanjay P. Kamble ◽  
Meenal M. Joshi ◽  
Jyotsna S. Meshram ◽  
Nitin K. Labhsetwar ◽  
...  

In this study, nitrogen-doped mesoporous titania was synthesized by templating method using chitosan. This biopolymer chitosan plays the dual role of acting as a template (which imparts mesoporosity) and precursor for nitrogen. BET-SA, XRD, UV-DRS, SEM, and FTIR were used to characterize the photocatalyst. The doping of nitrogen into TiO2lattice and its state was substantiated and measured by XPS. The photocatalytic activity of the prepared N-doped mesoporous titania for phenol ando-chlorophenol degradation was investigated under solar and artificial radiation. The rate of photocatalytic degradation was observed to be higher foro-chlorophenol than that of phenol. The photodegradation ofo-chlorophenol was 98.62% and 72.2%, while in case of phenol, degradation to the tune of 69.25% and 30.58% was achieved in solar and artificial radiation. The effect of various operating parameters, namely, catalyst loading, pH, initial concentration and the effect of coexisting ions on the rate of photocatalytic degradation were studied in detail.


2019 ◽  
pp. 1-11
Author(s):  
Biljana Abramovic ◽  
Maria Uzelac ◽  
Nina Fincur

In this work, the efficiency of direct photolytic and photocatalytic degradation of thiotriazinone, stable hydrolysis product of antibiotic ceftriaxone, was examined. The efficiency of photocatalytic degradation of 0.05 mmol/dm3 thiotriazinone solution was investigated using commercially available TiO2 Hombikat catalyst under simulated solar irradiation, as well as in the absence/presence of ammonium persulfate ((NH4)2S2O8) as electron acceptor. It was found that the optimal conditions for photocatalytic degradation of thiotriazinone were: catalyst loading 1.0 mg/cm3 of TiO2 Hombikat, electron acceptor 3 mmol/dm3 of (NH4)2S2O8 solution, and pH 7.6. Under the stated conditions 76.0% of thiotriazinone was degradated after 60 min of irradiation. The kinetics of degradation was followed by UFLC-DAD technique.


2018 ◽  
Vol 18 (3) ◽  
pp. 81-91 ◽  
Author(s):  
C. Lalhriatpuia

Nanopillars-TiO2 thin films was obtained on a borosilicate glass substrate with (S1) and without (S2) polyethylene glycol as template. The photocatalytic behaviour of S1 and S2 thin films was assessed inthe degradation of methylene blue (MB) dye from aqueous solution under batch reactor operations. The thin films were characterized by the SEM, XRD, FTIR and AFM analytical methods. BET specific surface area and pore sizes were also obtained. The XRD data confirmed that the TiO2 particles are in its anatase mineral phase. The SEM and AFM images indicated the catalyst is composed with nanosized pillars of TiO2, evenly distributed on the surface of the substrate. The BET specific surface area and pore sizes of S1 and S2 catalyst were found to be 5.217 and 1.420 m2/g and 7.77 and 4.16 nm respectively. The photocatalytic degradation of MB was well studied at wide range of physico-chemical parameters. The effect of solution pH (pH 4.0 to 10.0) and MB initial concentration (1.0 to 10.0 mg/L) was extensively studied and the effect of several interfering ions, i.e., cadmium nitrate, copper sulfate, zinc chloride, sodium chloride, sodium nitrate, sodium nitrite, glycine, oxalic acid and EDTA in the photocatalytic degradation of MB was demonstrated. The maximum percent removal of MB was observed at pH 8.0 beyond which it started decreasing and a low initial concentration of the pollutant highly favoured the photocatalytic degradation using thin films and the presence of several interfering ions diminished the photocatalytic activity of thin films to some extent. The overall photocatalytic activity was in the order: S2 > S1 > UV. The photocatalytic degradation of MB was followed the pseudo-first-order rate kinetics. The mineralization of MB was studied with total organic carbon measurement using the TOC (total organic carbon) analysis.


2018 ◽  
Vol 6 (1) ◽  
pp. 22-30
Author(s):  
C. Lalhriatpuia ◽  
◽  
Thanhming liana ◽  
K. Vanlaldinpuia

The photocatalytic activity of Nanopillars-TiO2 thin films was assessed in the degradation of Bromophenol blue (BPB) dye from aqueous solution under batch reactor operations. The thin films were characterized by the XRD, SEM and AFM analytical methods. BET specific surface area and pore sizes were also obtained. The XRD data showed anatase phase of TiO2 particles with average particle size of 25.4 and 21.9 nm, for S1 and S2 catalysts respectively. The SEM and AFM images indicated the catalyst composed with Nanosized pillars of TiO2, evenly distributed on the surface of the substrate. The average height of the pillars was found to be 180 and 40 nm respectively for the S1 and S2 catalyst. The BET specific surface area and pore sizes of S1 and S2 catalyst were found to be 5.217 and 1.420 m2/g and 7.77 and 4.16 nm respectively. The photocatalytic degradation of BPB using the UV light was studied at wide range of physico-chemical parametric studies to determine the mechanism of degradation as well as the practical applicability of the technique. The batch reactor operations were conducted at varied pH (pH 4.0 to 10.0), BPB initial concentration (1.0 to 20.0 mg/L) and presence of several interfering ions, i.e., cadmium nitrate, copper sulfate, zinc chloride, sodium chloride, sodium nitrate, sodium nitrite, glycine, oxalic acid and EDTA in the photocatalytic degradation of BPB. The maximum percent removal of BPB was observed at pH 6.0 and a low initial concentration of the pollutant highly favours the photocatalytic degradation using thin films. The presence of several interfering ions suppressed the photocatalytic activity of thin films to some extent. The time dependence photocatalytic degradation of BPB was demonstrated with the pseudo-first-order rate kinetics. Study was further extended with total organic carbon measurement using the TOC (Total Organic Carbon) analysis. This demonstrated an apparent mineralization of BPB from aqueous solutions.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1338 ◽  
Author(s):  
Klara Perović ◽  
Francis M. dela Rosa ◽  
Marin Kovačić ◽  
Hrvoje Kušić ◽  
Urška Lavrenčič Štangar ◽  
...  

Clean water and the increased use of renewable energy are considered to be two of the main goals in the effort to achieve a sustainable living environment. The fulfillment of these goals may include the use of solar-driven photocatalytic processes that are found to be quite effective in water purification, as well as hydrogen generation. H2 production by water splitting and photocatalytic degradation of organic pollutants in water both rely on the formation of electron/hole (e−/h+) pairs at a semiconducting material upon its excitation by light with sufficient photon energy. Most of the photocatalytic studies involve the use of TiO2 and well-suited model compounds, either as sacrificial agents or pollutants. However, the wider application of this technology requires the harvesting of a broader spectrum of solar irradiation and the suppression of the recombination of photogenerated charge carriers. These limitations can be overcome by the use of different strategies, among which the focus is put on the creation of heterojunctions with another narrow bandgap semiconductor, which can provide high response in the visible light region. In this review paper, we report the most recent advances in the application of TiO2 based heterojunction (semiconductor-semiconductor) composites for photocatalytic water treatment and water splitting. This review article is subdivided into two major parts, namely Photocatalytic water treatment and Photocatalytic water splitting, to give a thorough examination of all achieved progress. The first part provides an overview on photocatalytic degradation mechanism principles, followed by the most recent applications for photocatalytic degradation and mineralization of contaminants of emerging concern (CEC), such as pharmaceuticals and pesticides with a critical insight into removal mechanism, while the second part focuses on fabrication of TiO2-based heterojunctions with carbon-based materials, transition metal oxides, transition metal chalcogenides, and multiple composites that were made of three or more semiconductor materials for photocatalytic water splitting.


Sign in / Sign up

Export Citation Format

Share Document