scholarly journals Enhanced Thermoelectric Performance of Polycrystalline Si0.8Ge0.2 Alloys through the Addition of Nanoscale Porosity

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2591
Author(s):  
S. Aria Hosseini ◽  
Giuseppe Romano ◽  
P. Alex Greaney

Engineering materials to include nanoscale porosity or other nanoscale structures has become a well-established strategy for enhancing the thermoelectric performance of dielectrics. However, the approach is only considered beneficial for materials where the intrinsic phonon mean-free path is much longer than that of the charge carriers. As such, the approach would not be expected to provide significant performance gains in polycrystalline semiconducting alloys, such as SixGe1-x, where mass disorder and grains provide strong phonon scattering. In this manuscript, we demonstrate that the addition of nanoscale porosity to even ultrafine-grained Si0.8Ge0.2 may be worthwhile. The semiclassical Boltzmann transport equation was used to model electrical and phonon transport in polycrystalline Si0.8Ge0.2 containing prismatic pores perpendicular to the transport current. The models are free of tuning parameters and were validated against experimental data. The models reveal that a combination of pores and grain boundaries suppresses phonon conductivity to a magnitude comparable with the electronic thermal conductivity. In this regime, ZT can be further enhanced by reducing carrier concentration to the electrical and electronic thermal conductivity and simultaneously increasing thermopower. Although increases in ZT are modest, the optimal carrier concentration is significantly lowered, meaning semiconductors need not be so strongly supersaturated with dopants.

Author(s):  
Tran Van Quang

Bismuth telluride and its related compounds are the state-of-the-art thermoelectric materials operating at room temperature. Bismuth telluride with Pb substituted, PbBi4Te7, has been found to be a new quasi-binary compound with an impressive high power factor. In this work, in the framework of density functional theory, we study the electronic thermal conductivity of the compound by employing the solution of Boltzmann Transport Equation in a constant relaxation-time approximation. The results show that the electronic thermal conductivity drastically increases with the increase of temperature and carrier concentration which have a detrimental effect on the thermoelectric performance. At a particular temperature, the competition between the thermal conductivity, the Seebeck coefficient and the electrical conductivity limits the thermoelectric figure of merit, ZT. The maximum ZT value of about 0.47 occurs at 520 K and at the carrier concentration of 5.0×1019cm-3 for n-type doping. This suggests that to maximize the thermoelectric performance of the compound, the carrier concentration must be carefully controlled and optimized whereas the best operating temperature is around 500 K.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1564
Author(s):  
Jin Hee Kim ◽  
Song Yi Back ◽  
Jae Hyun Yun ◽  
Ho Seong Lee ◽  
Jong-Soo Rhyee

We investigated the anisotropic thermoelectric properties of the Bi2Te2.85Se0.15Ix (x = 0.0, 0.1, 0.3, 0.5 mol.%) compounds, synthesized by ball-milling and hot-press sintering. The electrical conductivities of the Bi2Te2.85Se0.15Ix were significantly improved by the increase of carrier concentration. The dominant electronic scattering mechanism was changed from the mixed (T ≤ 400 K) and ionization scattering (T ≥ 420 K) for pristine compound (x = 0.0) to the acoustic phonon scattering by the iodine doping. The Hall mobility was also enhanced with the increasing carrier concentration. The enhancement of Hall mobility was caused by the increase of the mean free path of the carrier from 10.8 to 17.7 nm by iodine doping, which was attributed to the reduction of point defects without the meaningful change of bandgap energy. From the electron diffraction patterns, a lattice distortion was observed in the iodine doped compounds. The modulation vector due to lattice distortion increased with increasing iodine concentration, indicating the shorter range lattice distortion in real space for the higher iodine concentration. The bipolar thermal conductivity was suppressed, and the effective masses were increased by iodine doping. It suggests that the iodine doping minimizes the ionization scattering giving rise to the suppression of the bipolar diffusion effect, due to the prohibition of the BiTe1 antisite defect, and induces the lattice distortion which decreases lattice thermal conductivity, resulting in the enhancement of thermoelectric performance.


2021 ◽  
Vol 871 ◽  
pp. 203-207
Author(s):  
Jian Liu

In this work, we use first principles DFT calculations, anharmonic phonon scatter theory and Boltzmann transport method, to predict a comprehensive study on the thermoelectric properties as electronic and phonon transport of layered LaSe2 crystal. The flat-and-dispersive type band structure of LaSe2 crystal offers a high power factor. In the other hand, low lattice thermal conductivity is revealed in LaSe2 semiconductor, combined with its high power factor, the LaSe2 crystal is considered a promising thermoelectric material. It is demonstrated that p-type LaSe2 could be optimized to exhibit outstanding thermoelectric performance with a maximum ZT value of 1.41 at 1100K. Explored by density functional theory calculations, the high ZT value is due to its high Seebeck coefficient S, high electrical conductivity, and low lattice thermal conductivity .


Author(s):  
Dhruv Singh ◽  
Jayathi Y. Murthy ◽  
Timothy S. Fisher

This paper examines the thermodynamic and thermal transport properties of the 2D graphene lattice. The interatomic interactions are modeled using the Tersoff interatomic potential and are used to evaluate phonon dispersion curves, density of states and thermodynamic properties of graphene as functions of temperature. Perturbation theory is applied to calculate the transition probabilities for three-phonon scattering. The matrix elements of the perturbing Hamiltonian are calculated using the anharmonic interatomic force constants obtained from the interatomic potential as well. An algorithm to accurately quantify the contours of energy balance for three-phonon scattering events is presented and applied to calculate the net transition probability from a given phonon mode. Under the linear approximation, the Boltzmann transport equation (BTE) is applied to compute the thermal conductivity of graphene, giving spectral and polarization-resolved information. Predictions of thermal conductivity for a wide range of parameters elucidate the behavior of diffusive phonon transport. The complete spectral detail of selection rules, important phonon scattering pathways, and phonon relaxation times in graphene are provided, contrasting graphene with other materials, along with implications for graphene electronics. We also highlight the specific scattering processes that are important in Raman spectroscopy based measurements of graphene thermal conductivity, and provide a plausible explanation for the observed dependence on laser spot size.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Jackson R. Harter ◽  
Laura de Sousa Oliveira ◽  
Agnieszka Truszkowska ◽  
Todd S. Palmer ◽  
P. Alex Greaney

We present a method for solving the Boltzmann transport equation (BTE) for phonons by modifying the neutron transport code Rattlesnake which provides a numerically efficient method for solving the BTE in its self-adjoint angular flux (SAAF) form. Using this approach, we have computed the reduction in thermal conductivity of uranium dioxide (UO2) due to the presence of a nanoscale xenon bubble across a range of temperatures. For these simulations, the values of group velocity and phonon mean free path in the UO2 were determined from a combination of experimental heat conduction data and first principles calculations. The same properties for the Xe under the high pressure conditions in the nanoscale bubble were computed using classical molecular dynamics (MD). We compare our approach to the other modern phonon transport calculations, and discuss the benefits of this multiscale approach for thermal conductivity in nuclear fuels under irradiation.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5604
Author(s):  
Yanyan Chen ◽  
Jie Sun ◽  
Wei Kang ◽  
Qian Wang

The pentagon has been proven to be an important structural unit for carbon materials, leading to different physical and chemical properties from those of hexagon-based allotropes. Following the development from graphene to penta-graphene, a breakthrough has very recently been made for graphyne—for example, imidazole-graphyne (ID-GY) was formed by assembling experimentally synthesized pentagonal imidazole molecules and acetylenic linkers. In this work, we study the thermal properties and thermoelectric performance of ID-GY by combining first principle calculations with the Boltzmann transport theory. The calculated lattice thermal conductivity of ID-GY is 10.76 W/mK at 300 K, which is only one tenth of that of γ-graphyne (106.24 W/mK). A detailed analysis of the harmonic and anharmonic properties, including the phonon group velocity, phonon lifetime, atomic displacement parameter, and bond energy curves, reveals that the low lattice thermal conductivity can be attributed to the low Young’s modulus, low Debye temperature, and high Grüneisen parameter. Furthermore, at room temperature, ID-GY can reach a high ZT value of 0.46 with a 5.8 × 1012 cm−2 hole concentration, which is much higher than the value for many other carbon-based materials. This work demonstrates that changing structural units from hexagonal to pentagonal can significantly reduce the lattice thermal conductivity and enhance the thermoelectric performance of carbon-based materials.


2015 ◽  
Vol 1735 ◽  
Author(s):  
M. Upadhyaya ◽  
Z. Aksamija

ABSTRACTSilicon-germanium (SiGe) superlattices (SLs) have been proposed for application as efficient thermoelectrics because of their low thermal conductivity, below that of bulk SiGe alloys. However, the cost of growing SLs is prohibitive, so nanocomposites, made by a ball-milling and sintering, have been proposed as a cost-effective replacement with similar properties. Lattice thermal conductivity in SiGe SLs is reduced by scattering from the rough interfaces between layers. Therefore, it is expected that interface properties, such as roughness, orientation, and composition, will play a significant role in thermal transport in nanocomposites and offer many additional degrees of freedom to control the thermal conductivity in nanocomposites by tailoring grain size, shape, and crystal angle distributions. We previously demonstrated the sensitivity of the lattice thermal conductivity in SLs to the interface properties, based on solving the phonon Boltzmann transport equation under the relaxation time approximation. Here we adapt the model to a broad range of SiGe nanocomposites. We model nanocomposite structures using a Voronoi tessellation to mimic the grains and their distribution in the nanocomposite and show excellent agreement with experimentally observed structures, while for nanowires we use the Monte Carlo method to solve the phonon Boltzmann equation. In order to accurately treat phonon scattering from a series of atomically rough interfaces between the grains in the nanocomposite and at the boundaries of nanowires, we employ a momentum-dependent specularity parameter. Our results show thermal transport in SiGe nanocomposites and nanowires is reduced significantly below their bulk alloy counterparts.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Eric Osei-Agyemang ◽  
Challen Enninful Adu ◽  
Ganesh Balasubramanian

AbstractAn emerging chalcogenide perovskite, CaZrSe3, holds promise for energy conversion applications given its notable optical and electrical properties. However, knowledge of its thermal properties is extremely important, e.g. for potential thermoelectric applications, and has not been previously reported in detail. In this work, we examine and explain the lattice thermal transport mechanisms in CaZrSe3 using density functional theory and Boltzmann transport calculations. We find the mean relaxation time to be extremely short corroborating an enhanced phonon–phonon scattering that annihilates phonon modes, and lowers thermal conductivity. In addition, strong anharmonicity in the perovskite crystal represented by the Grüneisen parameter predictions, and low phonon number density for the acoustic modes, results in the lattice thermal conductivity to be limited to 1.17 W m−1 K−1. The average phonon mean free path in the bulk CaZrSe3 sample (N → ∞) is 138.1 nm and nanostructuring CaZrSe3 sample to ~10 nm diminishes the thermal conductivity to 0.23 W m−1 K−1. We also find that p-type doping yields higher predictions of thermoelectric figure of merit than n-type doping, and values of ZT ~0.95–1 are found for hole concentrations in the range 1016–1017 cm−3 and temperature between 600 and 700 K.


Author(s):  
Weixue Tian ◽  
Ronggui Yang

In this paper, we investigated the thermal conductivity of three-dimensional nanocomposites composed of randomly distributed nanoparticles with large thermal conductivity differences in the constituents. Nanoparticles in composite materials fabricated by processes such as hot press or spark plasma sintering tend to be randomly distributed. For composites made of particles with high thermal conductivity contrast ratio, percolation theory predicts the existence of a continuous phase of high thermal conductivity material when its volumetric concentration reaches beyond the percolation threshold. Such a continuous phase can provide a low resistance pathway for phonon transport in the nanocomposites. Therefore, the thermal conductivity of the composites is expected to increase significantly with increasing concentration of the high thermal conductivity nanoparticles. However, when the characteristic size of the nanoparticles is comparable or smaller than the phonon mean free path, the interface between two materials causes phonon scattering and significant thermal resistance in the highly conductive phonon pathway. Such an additional thermal resistance can reduce the magnitude of the thermal conductivity improvement in the nanocomposites. In this study, the Monte Carlo simulation was employed to generate the nanoparticle random distribution and to simulate phonon transport in the nanocomposites. The effects of particle size, thermal conductivity contrast and interface characteristic on thermal conductivity of the nanocomposites are discussed.


MRS Advances ◽  
2017 ◽  
Vol 2 (58-59) ◽  
pp. 3637-3643
Author(s):  
William T. Yorgason ◽  
Arden N. Barnes ◽  
Nick Roberts

ABSTRACT Thermoelectric materials have been of interest for several decades due to their ability to recapture waste heat of various systems and convert it to useful electricity. One method used to improve the thermoelectric efficiency of a material is to reduce the lattice thermal conductivity (k p ) while not affecting the other properties. In order to reduce the k p of the material, this paper introduces silicon (Si) nanoparticles (NPs) in Mg2Si to manipulate phonon scattering and mean free path. A series of simulations is performed with the metal silicide thermoelectric material MgxSix. The objective of this work is two-fold: 1) to determine the optimal Si nanoparticle (NP) concentration and 2) to determine the optimal MgxSix stoichiometry for minimizing the k p of the system. It should be noted, however, that the assumed reduction in thermal conductivity is only a result of reduced phonon transport and that minimal impact is made on the transport of electrons. Interestingly, the uniform off-stoichiometry (49.55 atomic percent (a/o) Si) sample of MgxSix resulted in a reduction of k p of 84.62 %, while the Si NP sample, with matching a/o Si, resulted in a reduction of k p of 78.82 %.


Sign in / Sign up

Export Citation Format

Share Document