scholarly journals Deterministic Phonon Transport Predictions of Thermal Conductivity in Uranium Dioxide With Xenon Impurities

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Jackson R. Harter ◽  
Laura de Sousa Oliveira ◽  
Agnieszka Truszkowska ◽  
Todd S. Palmer ◽  
P. Alex Greaney

We present a method for solving the Boltzmann transport equation (BTE) for phonons by modifying the neutron transport code Rattlesnake which provides a numerically efficient method for solving the BTE in its self-adjoint angular flux (SAAF) form. Using this approach, we have computed the reduction in thermal conductivity of uranium dioxide (UO2) due to the presence of a nanoscale xenon bubble across a range of temperatures. For these simulations, the values of group velocity and phonon mean free path in the UO2 were determined from a combination of experimental heat conduction data and first principles calculations. The same properties for the Xe under the high pressure conditions in the nanoscale bubble were computed using classical molecular dynamics (MD). We compare our approach to the other modern phonon transport calculations, and discuss the benefits of this multiscale approach for thermal conductivity in nuclear fuels under irradiation.

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2591
Author(s):  
S. Aria Hosseini ◽  
Giuseppe Romano ◽  
P. Alex Greaney

Engineering materials to include nanoscale porosity or other nanoscale structures has become a well-established strategy for enhancing the thermoelectric performance of dielectrics. However, the approach is only considered beneficial for materials where the intrinsic phonon mean-free path is much longer than that of the charge carriers. As such, the approach would not be expected to provide significant performance gains in polycrystalline semiconducting alloys, such as SixGe1-x, where mass disorder and grains provide strong phonon scattering. In this manuscript, we demonstrate that the addition of nanoscale porosity to even ultrafine-grained Si0.8Ge0.2 may be worthwhile. The semiclassical Boltzmann transport equation was used to model electrical and phonon transport in polycrystalline Si0.8Ge0.2 containing prismatic pores perpendicular to the transport current. The models are free of tuning parameters and were validated against experimental data. The models reveal that a combination of pores and grain boundaries suppresses phonon conductivity to a magnitude comparable with the electronic thermal conductivity. In this regime, ZT can be further enhanced by reducing carrier concentration to the electrical and electronic thermal conductivity and simultaneously increasing thermopower. Although increases in ZT are modest, the optimal carrier concentration is significantly lowered, meaning semiconductors need not be so strongly supersaturated with dopants.


2021 ◽  
Vol 871 ◽  
pp. 203-207
Author(s):  
Jian Liu

In this work, we use first principles DFT calculations, anharmonic phonon scatter theory and Boltzmann transport method, to predict a comprehensive study on the thermoelectric properties as electronic and phonon transport of layered LaSe2 crystal. The flat-and-dispersive type band structure of LaSe2 crystal offers a high power factor. In the other hand, low lattice thermal conductivity is revealed in LaSe2 semiconductor, combined with its high power factor, the LaSe2 crystal is considered a promising thermoelectric material. It is demonstrated that p-type LaSe2 could be optimized to exhibit outstanding thermoelectric performance with a maximum ZT value of 1.41 at 1100K. Explored by density functional theory calculations, the high ZT value is due to its high Seebeck coefficient S, high electrical conductivity, and low lattice thermal conductivity .


2018 ◽  
Vol 20 (3) ◽  
pp. 1809-1816 ◽  
Author(s):  
Robert L. González-Romero ◽  
Alex Antonelli ◽  
Anderson S. Chaves ◽  
Juan J. Meléndez

An ultralow lattice thermal conductivity of 0.14 W m−1 K−1 along the b⃑ axis of As2Se3 single crystals was obtained at 300 K by first-principles calculations involving density functional theory and the resolution of the Boltzmann transport equation.


Author(s):  
A. J. H. McGaughey ◽  
J. A. Thomas ◽  
J. Turney ◽  
R. M. Iutzi

We investigate thermal transport in water/carbon nanotube (CNT) composite systems using molecular dynamics simulations. Carbon-carbon interactions are modeled using the second-generation REBO potential, water-water interactions are modeled using the TIP4P potential, and carbon-water interactions are modeled using a Lennard-Jones potential. The thermal conductivities of empty and water-filled CNTs with diameters between 0.83 nm and 1.66 nm are predicted using molecular dynamics simulation and a direct application of the Fourier law. For empty CNTs, the thermal conductivity decreases with increasing CNT diameter. As the CNT length approaches 1 micron, a length-independent thermal conductivity is obtained, indicative of diffusive phonon transport. When the CNTs are filled with water, the thermal conductivity decreases compared to the empty CNTs and transitions to diffusive phonon transport at shorter lengths. To understand this behavior, we calculate the spectral energy density of the empty and water-filled CNTs and calculate the mode-specific group velocities, relaxation times, and thermal conductivity. For the empty 1.10 nm diameter CNT, we show that the acoustic phonon modes account for 65 percent of the total thermal conductivity. This behavior is attributed to their long mean-free paths. When the CNT is filled with water, interactions with the water molecules shorten the acoustic mode mean-free path and lower the overall CNT thermal conductivity.


2017 ◽  
Vol 19 (47) ◽  
pp. 32072-32078 ◽  
Author(s):  
Aamir Shafique ◽  
Young-Han Shin

The effect of strain on the phonon properties such as phonon group velocity, phonon anharmonicity, phonon lifetime, and lattice thermal conductivity of monolayer 2H-MoTe2is studied by solving the Boltzmann transport equation based on first principles calculations.


2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Giuseppe Romano ◽  
Jeffrey C. Grossman

We develop a computational framework, based on the Boltzmann transport equation (BTE), with the ability to compute thermal transport in nanostructured materials of any geometry using, as the only input, the bulk cumulative thermal conductivity. The main advantage of our method is twofold. First, while the scattering times and dispersion curves are unknown for most materials, the phonon mean free path (MFP) distribution can be directly obtained by experiments. As a consequence, a wider range of materials can be simulated than with the frequency-dependent (FD) approach. Second, when the MFP distribution is available from theoretical models, our approach allows one to include easily the material dispersion in the calculations without discretizing the phonon frequencies for all polarizations thereby reducing considerably computational effort. Furthermore, after deriving the ballistic and diffusive limits of our model, we develop a multiscale method that couples phonon transport across different scales, enabling efficient simulations of materials with wide phonon MFP distributions length. After validating our model against the FD approach, we apply the method to porous silicon membranes and find good agreement with experiments on mesoscale pores. By enabling the investigation of thermal transport in unexplored nanostructured materials, our method has the potential to advance high-efficiency thermoelectric devices.


Author(s):  
Neil Zuckerman ◽  
Jennifer R. Lukes

The calculation of heat transport in nonmetallic materials at small length scales is important in the design of thermoelectric and electronic materials. New designs with quantum dot superlattices (QDS) and other nanometer-scale structures can change the thermal conductivity in ways that are difficult to model and predict. The Boltzmann Transport Equation can describe the propagation of energy via mechanical vibrations in an analytical fashion but remains difficult to solve for the problems of interest. Numerical methods for simulation of propagation and scattering of high frequency vibrational quanta (phonons) in nanometer-scale structures have been developed but are either impractical at micron length scales, or cannot truly capture the details of interactions with nanometer-scale inclusions. Monte Carlo (MC) models of phonon transport have been developed and demonstrated based on similar numerical methods used for description of electron transport [1-4]. This simulation method allows computation of thermal conductivity in materials with length scales LX in the range of 10 nm to 10 μm. At low temperatures the model approaches a ballistic transport simulation and may function for even larger length scales.


Author(s):  
Dhruv Singh ◽  
Jayathi Y. Murthy ◽  
Timothy S. Fisher

This paper examines the thermodynamic and thermal transport properties of the 2D graphene lattice. The interatomic interactions are modeled using the Tersoff interatomic potential and are used to evaluate phonon dispersion curves, density of states and thermodynamic properties of graphene as functions of temperature. Perturbation theory is applied to calculate the transition probabilities for three-phonon scattering. The matrix elements of the perturbing Hamiltonian are calculated using the anharmonic interatomic force constants obtained from the interatomic potential as well. An algorithm to accurately quantify the contours of energy balance for three-phonon scattering events is presented and applied to calculate the net transition probability from a given phonon mode. Under the linear approximation, the Boltzmann transport equation (BTE) is applied to compute the thermal conductivity of graphene, giving spectral and polarization-resolved information. Predictions of thermal conductivity for a wide range of parameters elucidate the behavior of diffusive phonon transport. The complete spectral detail of selection rules, important phonon scattering pathways, and phonon relaxation times in graphene are provided, contrasting graphene with other materials, along with implications for graphene electronics. We also highlight the specific scattering processes that are important in Raman spectroscopy based measurements of graphene thermal conductivity, and provide a plausible explanation for the observed dependence on laser spot size.


2019 ◽  
Vol 21 (28) ◽  
pp. 15647-15655 ◽  
Author(s):  
Zhehao Sun ◽  
Kunpeng Yuan ◽  
Xiaoliang Zhang ◽  
Guangzhao Qin ◽  
Xiaojing Gong ◽  
...  

In this study, strain modulation of the lattice thermal conductivity of monolayer and bilayer penta-graphene (PG) at room temperature was investigated using first-principles calculations combined with the phonon Boltzmann transport equation.


2003 ◽  
Vol 793 ◽  
Author(s):  
Ronggui Yang ◽  
Gang Chen

ABSTRACTA phonon Boltzmann transport model is established to study the lattice thermal conductivity of nanocomposites with nanowires embedded in a host semiconductor material. Special attention has been paid to cell-cell interaction using periodic boundary conditions. The simulation shows that the temperature profiles in nanocomposites are very different from those in conventional composites, due to ballistic phonon transport at nanoscale. The thermal conductivity of periodic 2-D nanocomposites is a strong function of the size of the embedded wires and the volumetric fraction of the constituent materials. At constant volumetric fraction the smaller the wire diameter, the smaller is the thermal conductivity of periodic two-dimensional nanocomposites. For fixed silicon wire dimension, the lower the atomic percentage of germanium, the lower the thermal conductivity of the nanocomposites. The results of this study can be used to direct the development of high efficiency thermoelectric materials.


Sign in / Sign up

Export Citation Format

Share Document