scholarly journals Catalytic Hydrogen Evolution of NaBH4 Hydrolysis by Cobalt Nanoparticles Supported on Bagasse-Derived Porous Carbon

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3259
Author(s):  
Yiting Bu ◽  
Jiaxi Liu ◽  
Hailiang Chu ◽  
Sheng Wei ◽  
Qingqing Yin ◽  
...  

As a promising hydrogen storage material, sodium borohydride (NaBH4) exhibits superior stability in alkaline solutions and delivers 10.8 wt.% theoretical hydrogen storage capacity. Nevertheless, its hydrolysis reaction at room temperature must be activated and accelerated by adding an effective catalyst. In this study, we synthesize Co nanoparticles supported on bagasse-derived porous carbon (Co@xPC) for catalytic hydrolytic dehydrogenation of NaBH4. According to the experimental results, Co nanoparticles with uniform particle size and high dispersion are successfully supported on porous carbon to achieve a Co@150PC catalyst. It exhibits particularly high activity of hydrogen generation with the optimal hydrogen production rate of 11086.4 mLH2∙min−1∙gCo−1 and low activation energy (Ea) of 31.25 kJ mol−1. The calculation results based on density functional theory (DFT) indicate that the Co@xPC structure is conducive to the dissociation of [BH4]−, which effectively enhances the hydrolysis efficiency of NaBH4. Moreover, Co@150PC presents an excellent durability, retaining 72.0% of the initial catalyst activity after 15 cycling tests. Moreover, we also explored the degradation mechanism of catalyst performance.

2014 ◽  
Vol 2 (24) ◽  
pp. 9193-9199 ◽  
Author(s):  
Yuanzhen Chen ◽  
Yongning Liu

Nano-Ru/porous carbon composites were prepared by Ru/aerogels which were made through a reaction of resorcinol, formaldehyde and RuCl3·3H2O.


2021 ◽  
pp. 2103533
Author(s):  
Rui Liu ◽  
Zhichao Gong ◽  
Jianbin Liu ◽  
Juncai Dong ◽  
Jiangwen Liao ◽  
...  

Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122276
Author(s):  
Lei Sun ◽  
Yuanyuan Meng ◽  
Xinxin Kong ◽  
Huiyun Ge ◽  
Xingman Chen ◽  
...  

Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 699 ◽  
Author(s):  
Ma ◽  
Zhong ◽  
Liu ◽  
Zhong ◽  
Yan ◽  
...  

Density functional theory calculations and molecular dynamics simulations were performed to investigate the hydrogen storage capacity in the sII hydrate. Calculation results show that the optimum hydrogen storage capacity is ~5.6 wt%, with the double occupancy in the small cage and quintuple occupancy in the large cage. Molecular dynamics simulations indicate that these multiple occupied hydrogen hydrates can occur at mild conditions, and their stability will be further enhanced by increasing the pressure or decreasing the temperature. Our work highlights that the hydrate is a promising material for storing hydrogen.


2015 ◽  
Vol 245 ◽  
pp. 86-92 ◽  
Author(s):  
O.V. Netskina ◽  
A.M. Ozerova ◽  
O.V. Komova ◽  
G.V. Odegova ◽  
V.I. Simagina

2020 ◽  
Vol 21 (2) ◽  
pp. 211-214
Author(s):  
O. M. Chernikova ◽  
Y. V. Ogorodnik

We review the physical mechanisms of heterogeneous catalytic oxidizing reactions methanol oxidation using bimetallic film layered mechanically strained PtNi and PtCu-based catalysts. The main research methods are theoretical calculations based on the density functional theory and the ˝ab initio˝ pseudopotential method. The work illustrates that the mechanical stress and the presence of dissociated oxygen have the greatest impact on increasing electron bimetallic catalyst activity during the oxidation of methanol with using bimetallic layered mechanically strained PtNi and PtCu-based catalysts. The compression of the platinum film pushes the electron density outside the film and it gives the density an elongated form and increases the chemical and absorption activity of the film.


Sign in / Sign up

Export Citation Format

Share Document