scholarly journals Controllable Preparation of Cubic Zeolite A and Application of Langmuir Model in Carbon Dioxide Adsorption

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3375
Author(s):  
Peng Wang ◽  
Jun Cao ◽  
Yujiao Zhang ◽  
Qi Sun

A large amount of remaining fly ash has been piled up or landfilled, which not only a waste of land resources but also results in a series of environmental problems. Therefore, using fly ash to produce high value-added products is a win-win development orientation between human beings and nature. In this study, zeolite A is successfully synthesized using a hydrothermal method using fly ash. Additionally, it is at 1.0 mol·L−1 of the alkali concentration that the crystallinity of zeolite A reaches the maximum value, about 96.6%. FTIR research shows that the main secondary structural unit D4R vibration band of zeolite A appears at 555 cm−1. The results of the SEM study indicate the structure of zeolite A is cubic. The TEM results show that the crystal structure of the zeolite A belongs to the body-centered cubic structure. Meanwhile, the positively charged sodium ions cooperate with the silicon oxygen tetrahedron and the aluminum oxygen tetrahedron to form the zeolite A skeleton. Carbon dioxide adsorption equilibrium study shows that the maximum adsorption capacity of zeolite A of 46.5 mL·g−1 is significantly higher than the maximum adsorption capacity of commercial-grade zeolite 4A of 39.3 mL·g−1. In addition, the application of the Langmuir model in the adsorption of carbon dioxide by commercial-grade zeolite 4A and zeolite A is studied, which not only extends the application of zeolite A, but can be further extended to other zeolite materials as well. Meanwhile, the adsorption process belongs to the Langmuir model, which is a single layer adsorption on an ideal surface.

2018 ◽  
Author(s):  
Jaya Prakash Madda ◽  
Pilli Govindaiah ◽  
Sushant Kumar Jena ◽  
Sabbhavat Krishna ◽  
Rupak Kishor

<p>Covalent organic Imine polymers with intrinsic meso-porosity were synthesized by condensation reaction between 4,4-diamino diphenyl methane and (para/meta/ortho)-phthaladehyde. Even though these polymers were synthesized from precursors of bis-bis covalent link mode, the bulk materials were micrometer size particles with intrinsic mesoporous enables nitrogen as well as carbon dioxide adsorption in the void spaces. These polymers were showed stability up to 260<sup>o</sup> centigrade. Nitrogen gas adsorption capacity up to 250 cc/g in the ambient pressure was observed with type III adsorption characteristic nature. Carbon dioxide adsorption experiments reveal the possible terminal amine functional group to carbamate with CO<sub>2</sub> gas molecule to the polymers. One of the imine polymers, COP-3 showed more carbon dioxide sorption capacity and isosteric heat of adsorption (Q<sub>st</sub>) than COP-1 and COP-2 at 273 K even though COP-3 had lower porosity for nitrogen gas than COP-1 and COP-2. We explained the trends in gas adsorption capacities and Qst values as a consequence of the intra molecular interactions confirmed by Density Functional Theory computational experiments on small molecular fragments.</p>


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 63
Author(s):  
Maria Harja ◽  
Gabriela Buema ◽  
Nicoleta Lupu ◽  
Horia Chiriac ◽  
Dumitru Daniel Herea ◽  
...  

Fly ash/magnetite material was used for the adsorption of copper ions from synthetic wastewater. The obtained material was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) surface area, and vibrating sample magnetometer (VSM). Batch adsorption experiments were employed in order to investigate the effects of adsorbent dose, initial Cu (II) concentration and contact time over adsorption efficiency. The experimental isotherms were modeled using Langmuir (four types of its linearization), Freundlich, Temkin, and Harkins–Jura isotherm models. The fits of the results are estimated according to the Langmuir isotherm, with a maximum adsorption capacity of 17.39 mg/g. The pseudo-second-order model was able to describe kinetic results. The data obtained throughout the study prove that this novel material represents a potential low-cost adsorbent for copper adsorption with improved adsorption capacity and magnetic separation capability compared with raw fly ash.


2012 ◽  
Vol 30 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Jia M. Zhu ◽  
Kai G. He ◽  
Hu Zhang ◽  
Feng Xin

A two-step swelling method was used for preparing porous poly(ionic liquid)s based on the copolymer of 1-allyl-3-methylimidazolium tetrafluoroborate and acrylonitrile P([AMIM]BF4-AN), the copolymer of 1-allyl-3-methylimidazolium hexafluorophosphate and acrylonitrile P([AMIM]PF6-AN), and poly(vinylbenzyl trimethylammonium) tetrafluoroborate P[VBTMA]BF4. The characteristics of the polymers were assessed via FT-IR spectroscopy, scanning electron microscopy (SEM) and CO2 adsorption. The results indicated that the seed-swelling method was more effective in improving the CO2 adsorption capacity of imidazolium-based P([AMIM]BF4-AN) containing the [BF4]− anion. Exchanging [BF4]− for [PF6]− in the imidazolium-based poly(ionic liquid) led to almost the same CO2 adsorption as exhibited by the corresponding non-swelling copolymer. Moreover, the CO2 adsorption capacity of ammonium-based P[VBTMA]BF4 when treated by the seed-swelling method decreased considerably.


Author(s):  
Marcela N. Barbosa ◽  
Maria J. F. Costa ◽  
Maricele N. Barbosa ◽  
Valter J. Fernandes Jr. ◽  
Giancarlo R. Salazar-Banda ◽  
...  

The adsorption of carbon dioxide on amino silanes-functionalized MCM-41 and SBA-15 materials is reported. The functionalization of mesoporous silicas was made by post-synthesis method, by impregnation of 3-aminopropyltriethoxysilane. The obtained materials were characterized by X-ray diffraction, scanning and transmission electron microscopies, nitrogen adsorption-desorption and X-ray photoelectron spectroscopy measurements. The carbon dioxide adsorption capacities for the samples were carried out under ambient pressures. The obtained results evidenced that amino-silanes with a terminal amine (&ndash;NH2) were functionalized through covalent coupling of this group on the surface of the channels in the ordered mesoporous silica, meaning that the amine is anchored on the surface of the bigger pores of the MCM-41 and SBA-15 support. For functionalized materials, the CO2 adsorption capacity of the AMCM-41 increased from 0.18 to 1.1 mmol&middot;g&minus;1, whereas for ASBA-15, it was from 0.6 to 1.8 mmol&middot;g&minus;1. The Lagergren kinetic algorithms were applied in order to validate the obtained results, evidencing the enhanced carbon dioxide adsorption capacity and stability of the functionalized ordered mesoporous molecular sieves.


2013 ◽  
Vol 13 (4) ◽  
pp. 2703-2707 ◽  
Author(s):  
Young-Ki Kim ◽  
Yong-Hwan Mo ◽  
Jun Lee ◽  
Hyo-Sang You ◽  
Chang-Keun Yi ◽  
...  

2013 ◽  
Vol 68 (8) ◽  
pp. 1873-1879 ◽  
Author(s):  
Chongxia Wang ◽  
Qingping Song ◽  
Jiangang Gao

N-carboxymethyl chitosan (NCMC) was prepared by reacting chitosan (CTS) with chloroacetic acid and characterized by 13C-NMR spectroscopy to confirm that carboxymethylation occurred only in the amino groups. The adsorption properties of CTS, NCMC and O-carboxymethyl chitosan (OCMC) towards Pb(II) ions were evaluated and the order of the adsorption capacity was as follows: NCMC &gt; OCMC &gt; CTS. The effects of initial pH value (2.0–5.5) of the solutions and contact time (5–120 min) on adsorption of Pb(II) were investigated and the kinetic data were evaluated using the pseudo-first-order and pseudo-second-order models. Kinetics study showed that the adsorption process followed second-order kinetics rather than the first-order one. Furthermore, the experimental equilibrium data of Pb(II) on the NCMC were analyzed using the Langmuir and Freundlich isotherm models and the results indicated that the Langmuir model gave a better fit than the Freundlich equation and the maximum adsorption capacity obtained from the Langmuir model was 421.9 mg g−1.


2018 ◽  
Vol 5 (4) ◽  
pp. 187-196 ◽  
Author(s):  
Soheila Chavoshan ◽  
Maryam Khodadadi ◽  
Negin Nasseh ◽  
Ayat Hossein Panahi ◽  
Aliyeh Hosseinnejad

Background: Drugs, especially antibiotics, are one of the serious problems of modern life and the main pollution sources of the environment, especially in the last decade, which are harmful to human health and environment. The aim of this study was to investigate the removal of penicillin G from aqueous solutions using single-walled and multi-walled carbon nanotubes. Methods: In this study, the effect of different parameters including pH (3, 5, 7, 9, and 11), initial concentration of pollutant (50, 100, 150, and 200 mg/l), absorbent dose (0.25, 0.5, 0.75, and 1 g/L), mixing speed (0, 100, 200, and 300 rpm), and temperature (10, 15, 25, 35, 45°C) were investigated. The Langmuir, Freundlich, Temkin, BET, Dubinin-Radushkevich isotherms and adsorption kinetics of the first- and second-order equations were determined. Results: The results showed that the efficiency of single-walled and multi-walled carbon nanotubes in the removal of penicillin G was 68.25% and 56.37%, respectively, and adsorption capacity of the nanotubes was 141 mg/g and 119 mg/g at initial concentration of 50 mg/l and pH=5 with adsorption dose of 0.8 g/L for 105 minutes at 300 rpm and temperature of 10°C from aqueous solutions. Also, it was revealed that the adsorption process had the highest correlation with the Langmuir model and secondorder kinetics, and the maximum adsorption capacity based on Langmuir model was 373.80 mg/g. Conclusion: According to the results, it was found that single-walled and multi-walled carbon nanotubes can be used as effective absorbents in the removal of penicillin G from aqueous solutions.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1536 ◽  
Author(s):  
Peng Wang ◽  
Qi Sun ◽  
Yujiao Zhang ◽  
Jun Cao

Zeolite 4A was successfully prepared by hydrothermal synthesis using low-grade kaolin as a raw material. The properties of the synthesized zeolite 4A were characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR), 29Si magic-angle spinning (MAS)-nuclear magnetic resonance (NMR) and 27Al MAS-NMR, X-ray fluorescence (XRF), scanning electron microscopy (SEM)-energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), thermogravimetry (TG)-differential thermal analysis (DTA), and carbon dioxide adsorption analysis. The textural properties of the synthesized zeolite 4A was further studied by BET analysis technique. The thermal stability analysis showed that the heat resistance of the synthesized zeolite 4A is up to 940 °C. In addition, it is found that the Langmuir model has the best agreement with the adsorption equilibrium data for carbon dioxide by synthesized zeolite 4A and commercial zeolite 4A. Meanwhile, the carbon dioxide adsorption analysis confirmed that the maximum equilibrium adsorption amount of carbon dioxide on synthesized zeolite 4A is 59.3820 mL/g, which is higher than the 55.4303 mL/g of the commercial zeolite 4A.


Sign in / Sign up

Export Citation Format

Share Document