scholarly journals Gaseous Products Evolution Analyses for Catalytic Decomposition of AP by Graphene-Based Additives

Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 801 ◽  
Author(s):  
Shuwen Chen ◽  
Ting An ◽  
Yi Gao ◽  
Jie-Yao Lyu ◽  
De-Yun Tang ◽  
...  

A quantitative evaluation method has been developed to study the effects of nanoadditives on thermal decomposition mechanisms of energetic compounds using the conventional thermogravimetry coupled with mass spectrometry (TG/MS) technique. The decomposition of ammonium perchlorate (AP) under the effect of several energetic catalysts has been investigated as a demonstration. In particular, these catalysts are transition metal (Cu2+, Co2+ and Ni2+) complexes of triaminoguanidine (TAG), using graphene oxide (GO) as dopant. They have been well-compared in terms of their catalytic effects on the concentration of the released gaseous products of AP. These detailed quantitative analyses of the gaseous products of AP provide a proof that the proton transfer between ∙O and O2 determines the catalytic decomposition pathways, which largely depend on the type of reactive centers of the catalysts. This quantitative method could be applied to evaluate the catalytic effects of any other additives on the thermal decomposition of various energetic compounds.

2013 ◽  
Vol 34 (1) ◽  
pp. 165-174 ◽  
Author(s):  
Monika Kuźnia ◽  
Aneta Magdziarz

Abstract The most important and the most frequently used plastics are polyethylene (PE) and polypropylene (PP). They are characterised with high heating values (approximately 40 MJ/kg). Moreover, their chemical composition, based mainly on carbon and hydrogen, allows to use them in industrial processes. One of the methods of utilisation of plastic waste can be its use in the metallurgical industry. This paper presents results of thermal decomposition of waste PE/PP. Chemical and thermal analysis (TG) of studied wastes was carried out. Evolved gaseous products from the decomposition of wastes were indentified using mass spectrometry (TG-MS). This paper also presents an application of plastic wastes as supplemental fuel in blast furnace processes (as a substitute for coke) and as an addition in processes of coking coal.


2014 ◽  
Vol 1008-1009 ◽  
pp. 247-251
Author(s):  
Wipawan Sangsanga ◽  
Chuan Na ◽  
Jin Xiao Dou ◽  
Jiang Long Yu

The catalytic effects of Zn on the release of the gaseous products during pyrolysis of Shenhua lignite was investigated by using a fixed-bed quartz reactor. The product gas compositions from the coal pyrolysis were analyzed by a gas chromatography (GC). Experimental results show that Zn had noticeable catalytic effects on lignite pyrolysis. With the increase in Zn content, lignite weight loss increases during pyrolysis. However, there was an optimum content for amount Zn into the coal. Pyrolysis temperature had a great impact on the composition of pyrolysis gas. As the pyrolysis temperature increased, char yield decreased and gas yield increased. There existed a temperature that tar yield reached its maximum value.


1999 ◽  
Vol 338 (1-2) ◽  
pp. 45-55 ◽  
Author(s):  
Gurdip Singh ◽  
Inder Pal Singh Kapoor ◽  
Jaspreet Kaur

Sign in / Sign up

Export Citation Format

Share Document