Effects of Zn on Pyrolysis Characteristics of Shenhua Lignite

2014 ◽  
Vol 1008-1009 ◽  
pp. 247-251
Author(s):  
Wipawan Sangsanga ◽  
Chuan Na ◽  
Jin Xiao Dou ◽  
Jiang Long Yu

The catalytic effects of Zn on the release of the gaseous products during pyrolysis of Shenhua lignite was investigated by using a fixed-bed quartz reactor. The product gas compositions from the coal pyrolysis were analyzed by a gas chromatography (GC). Experimental results show that Zn had noticeable catalytic effects on lignite pyrolysis. With the increase in Zn content, lignite weight loss increases during pyrolysis. However, there was an optimum content for amount Zn into the coal. Pyrolysis temperature had a great impact on the composition of pyrolysis gas. As the pyrolysis temperature increased, char yield decreased and gas yield increased. There existed a temperature that tar yield reached its maximum value.

2014 ◽  
Vol 1008-1009 ◽  
pp. 252-256
Author(s):  
Wipawan Sangsanga ◽  
Jin Xiao Dou ◽  
Zhe Lei Tong ◽  
Jiang Long Yu

The catalytic effects of Zn on the yield of the gaseous products during steam gasification of lignite char were investigated by using a fixed-bed reactor. The gas composition was measured using a gas chromatography (GC). The experimental results show that Zn has catalytic effects on steam gasification and increased the yield of H2. There was an optimum content of Zn implanted into the coal above which zinc does not show further catalytic activity.


2019 ◽  
Vol 7 (2) ◽  
pp. 397-404
Author(s):  
Xiongchao Lin ◽  
Sasha Yang ◽  
Xujun Chen ◽  
Panpan Zheng ◽  
Yonggang Wang ◽  
...  

AbstractThis study aims to investigate the effects of calcium on the migration of nitrogen in coal (coal-N) to N-containing gas species, particularly, NH3 and HCN (volatile-N) in volatiles, as well as the chemical transformation of the N in char during coal pyrolysis under different temperatures. The pyrolysis experiments of Shengli brown coal and its derived coal samples loaded with different contents of calcium were conducted under 600–800 °C in a novel fluidized bed reactor. The experimental results showed that during coal pyrolysis, the generation of NH3 is mainly derived from secondary reactions among volatiles, tar and char with the catalytic effect of mineral matter, especially calcium in coal. Increasing pyrolysis temperature from 600 to 800 °C could enhance the release of N in coal to volatiles. Meanwhile, the increased pyrolysis temperature could also inhibit the generation of NH3 while facilitating the formation of HCN. The release of HCN is more sensitive to pyrolysis temperatures. Specifically, under higher pyrolysis temperatures, more N-containing structures in coal would become thermally unstable and crack into HCN; On the other hand, higher pyrolysis temperature could also enhance the decomposition of N in coal to N-containing species in tar or N2, thus reducing the release of HCN and NH3. Nitrogen in tar could either undergo secondary decomposition reactions, generating NH3, HCN, N2 and other N-containing species in gas phase, or experience condensation polymerization by forming macromolecular structure and be retained in char at high pyrolysis temperatures. Calcium could significantly restrain the release of N from coal, thus reducing the yields of NH3 and HCN. During coal pyrolysis, calcium catalytically enhances the fracture and combination of chemical bonds, generating abundant free radicals. These free radicals could continuously attack N-containing structures and consequently release the N-containing gaseous products, such as NH3, HCN, N2 etc., resulting in the decrease of N in char. Calcium also plays important roles in nitrogen transformation in char during coal pyrolysis by catalytically intensifying the transformation of N in char from pyridinic nitrogen (N-6) and pyrrolic nitrogen (N-5) to quaternary type nitrogen (N-Q) during coal pyrolysis.


2011 ◽  
Vol 347-353 ◽  
pp. 2107-2111
Author(s):  
Hong Ting Ma ◽  
Guo Li Yang ◽  
Su Feng Hao

A typical printed circuit boards (PCBs) has been investigated by using thermo-gravimetric analyser to study its pyrolysis characteristics, the results indicate that the maximum weight loss rate occurs at temperature between 320°C and 360°C. A higher heating rate results in higher initial, final, peak temperature, and a longer process of significant weight loss. At the same pyrolysis temperature, heating rate has little effect on the total weight loss. In addition, 1kg PCBs based FR-4 was pyrolyzed in a fixed-bed reactor. The pyrolysis residues are very friable, the organic, glass fiber and metallic fractions can easily be separated, and the electrical components can easily be removed from the remains. Considering energy-saving, better control and design of the pyrolysis process, the optimal pyrolysis parameters were suggested at heating rate 10°C/min, final pyrolysis temperature 500°C and holding time 30 min.


Author(s):  
Nyamsuren B ◽  
Barsbold Kh ◽  
Buyan-Ulzii B ◽  
Baasanjargal T ◽  
Enkhsaruul B

Bench-scale methanation experiments were performed using the mixture gases evolved in pyrolysis of Tavantolgoi weathered coal and of Baganuur thermal coal. The methanation reactor was composed of the parts of feed gas desulfurization, fixed bed main reactor, condenser and dryer of product gases. The preliminary desulfurized feed gas passed through the fixed bed methanation reactor with the three layers of Ni/Al2O3 catalyst mixed with different amounts of quartz in order to avoid from overheating in upper level of the catalyst. Methanation experiments of pyrolysis gases were performed at temperatures of 250°С and 350˚°С, in a pressure of 3 bar with a GHSV of 9000 h-1. In methanation of pyrolysis gas from the Tavantolgoi weathered coal, CH4 content was increased 10 times from 3.20% to 34.4% at 250°С, however CH4 content was increased 3 times from 9.60% to 29.4% during the methanation of Baganuur coal pyrolysis gas at 350°С. Тавантолгойн болон Багануурын нүүрсний пиролизын хийн метанжуулалтын томруулсан туршилт Хураангуй: Энэхүү судалгааны ажлаар Тавантолгойн ордын исэлдсэн давхаргын нүүрс болон Багануурын ордын үндсэн давхаргын нүүрсний пиролизоос үүссэн хийг метанжуулах томруулсан (бэнч) хэмжээний туршилтыг хийж гүйцэтгэв. Метанжуулалтын томруулсан төхөөрөмж нь хүхэргүйжүүлэгч, конденсатор, чийг шингээгч болон хөдөлгөөнгүй үет реактор бүхий урвалын систем байхаар зохион бүтээсэн. Нүүрсний пиролизын хийг кварцтай хольж Ni/Al2O3 катализаторын гурван үеэр нэвтрүүлж, дулаан дамжуулалтын усгүй шийдлийг хэрэглэсэн. Метанжуулалтын томруулсан туршилтыг 250°С болон 350˚°С температуруудад, 3 бар даралтанд, 9000 h-1 түүхий эдийн урсгал хурдтай нөхцөлд хийж гүйцэтгэв. Тавантолгойн ордын исэлдсэн давхаргын нүүрсний пиролизын хийг метанжуулахад бүтээгдэхүүн хий дэх метаны агуулга 3.20%-иас 34.4% хүрч 10 дахин ихсэж, харин Багануурын нүүрсний хийнээс үүссэн метаны агуулга 9.60%-иас 29.4% болж 3 дахин ихэслээ. Хэдийгээр метанжуулах процессын температур харьцангуй нам байсан боловч Тавантолгойн ордын исэлдсэн давхаргын нүүрсний пиролизын хийн метанжуулалтын дүнд үүссэн метан хийн агуулга нь Багануурын ордын үндсэн давхаргын нүүрсний пиролизын хийтэй харьцуулахад 5.01%-иар их байлаа.


2013 ◽  
Vol 2013 ◽  
pp. 1-3
Author(s):  
Adnan Bulut ◽  
Selhan Karagöz

Table sugars were pyrolyzed at different temperatures (300, 400, and 500°C) in a fixed-bed reactor. The effect of pyrolysis temperature on yields of liquid, solid, and gaseous products was investigated. As expected the yield of liquid products gradually increased and the yield of solid products gradually decreased when the pyrolysis temperature was raised. The yield of liquid products was greatest (52 wt%) at 500°C. The composition of bio-oils extracted with diethyl ether was identified by means of gas chromatography mass spectrometry (GC-MS), nuclear magnetic resonance (1H-NMR), and Fourier transform infrared spectroscopy (FTIR). The following compounds were observed in bio-oils produced from the pyrolysis of table sugar at 500°C: 1,4:3,6-dianhydro-α-d-glucopyranose, 5-(hydroxymethyl) furfural, 5-acetoxymethyl-2-furaldehyde, and cyclotetradecane liquid product. The relative concentration of 5-(hydroxymethyl) furfural was the highest in bio-oils obtained from pyrolysis of table sugars at 500°C.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4087 ◽  
Author(s):  
Jaroslav Moško ◽  
Michael Pohořelý ◽  
Siarhei Skoblia ◽  
Zdeněk Beňo ◽  
Michal Jeremiáš

Conventional methods of sewage sludge disposal are often limited by their environmental impact and economic demands. Pyrolysis has been studied as a viable method for sewage sludge disposal and transformation into usable products. Pyrolytic products may have various uses, and their complex characteristics shall be described to assess their potential for safe utilization. Here, we studied slow pyrolysis of stabilized sewage sludge in a fixed bed reactor at 400–800 °C to describe the composition of the pyrolysis gas and the condensate fraction. We found that condensate elemental composition was practically independent of pyrolysis temperature. On the other hand, the composition of the pyrolysis gas was strongly temperature-dependent regarding both the share of major components (H2, CO, CO2, CH4) and C2–C6 hydrocarbons speciation (which as a sum attributed to 7–9 vol. % of the gas). The increase in pyrolysis temperature also resulted in increasing the N2 content of the gas, whereas the sulfur containing gas compounds were substantially diluted in the increasing gas volume.


2019 ◽  
Vol 5 (12) ◽  
pp. 37-46
Author(s):  
K. Chalov ◽  
Yu. Lugovoy ◽  
Yu. Kosivtsov ◽  
E. Sulman

This paper presents a study of the process of thermal degradation of crosslinked polyethylene. The kinetics of polymer decomposition was studied by thermogravimetry. Crosslinked polyethylene showed high heat resistance to temperatures of 400 °C. The temperature range of 430–500 °C was determined for the loss of the bulk of the sample. According to thermogravimetric data, the decomposition process proceeds in a single stage and includes a large number of fracture, cyclization, dehydrogenation, and other reactions. The process of pyrolysis of a crosslinked polymer in a stationary-bed metal reactor was investigated. The influence of the process temperature on the yield of solid, liquid, and gaseous pyrolysis products was investigated. The optimum process temperature was 500 °C. At this temperature, the yield of liquid and gaseous products was 85.0 and 12.5% (mass.), Respectively. Samples of crosslinked polyester decomposed almost completely. The amount of carbon–containing residue was 3.5% by weight of the feedstock. With increasing temperature, the yield of liquid products decreased slightly and the yield of gaseous products increased, but their total yield did not increase. For gaseous products, a qualitative and quantitative composition was determined. The main components of the pyrolysis gas were hydrocarbons C1–C4. The calorific value of pyrolysis gas obtained at a temperature of 500 °C was 17 MJ/m3. Thus, the pyrolysis process can be used to process crosslinked polyethylene wastes to produce liquid hydrocarbons and combustible gases.


2020 ◽  
Vol 849 ◽  
pp. 47-52
Author(s):  
Siti Jamilatun ◽  
Aster Rahayu ◽  
Yano Surya Pradana ◽  
Budhijanto ◽  
Rochmadi ◽  
...  

Nowadays, energy consumption has increased as a population increases with socio-economic developments and improved living standards. Therefore, it is necessary to find a replacement for fossil energy with renewable energy sources, and the potential to develop is biofuels. Bio-oil, water phase, gas, and char products will be produced by utilizing Spirulina platensis (SPR) microalgae extraction residue as pyrolysis raw material. The purpose of this study is to characterize pyrolysis products and bio-oil analysis with GC-MS. Quality fuel is good if O/C is low, H/C is high, HHV is high, and oxygenate compounds are low, but aliphatic and aromatic are high. Pyrolysis was carried out at a temperature of 300-600°C with a feed of 50 grams in atmospheric conditions with a heating rate of 5-35°C/min, the equipment used was a fixed-bed reactor. The higher the pyrolysis temperature, the higher the bio-oil yield will be to an optimum temperature, then lower. The optimum temperature of pyrolysis is 550°C with a bio-oil yield of 23.99 wt%. The higher the pyrolysis temperature, the higher the H/C, the lower O/C. The optimum condition was reached at a temperature of 500°C with the values of H/C, and O/C is 1.17 and 0.47. With an increase in temperature of 300-600°C, HHV increased from 11.64 MJ/kg to 20.63 MJ/kg, the oxygenate compound decreased from 85.26 to 37.55 wt%. Aliphatics and aromatics increased, respectively, from 5.76 to 36.72 wt% and 1.67 to 6.67 wt%.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2537
Author(s):  
Felix Charvet ◽  
Felipe Silva ◽  
Luís Ruivo ◽  
Luís Tarelho ◽  
Arlindo Matos ◽  
...  

Charcoal production in Portugal is mostly based on the valorization of woody residues from cork oak and holm oak, the latter being considered a reference feedstock in the market. Nevertheless, since wildfire prevention became a priority in Portugal, after the recent dramatic wildfires, urgent actions are being conducted to reduce the fuel load in the forests, which is increasing the amount of biomass that is available for valorization. Additionally, biomass residues from agriculture, forest management, control of invasive species, partially burnt wood from post-fire recovery actions, and waste wood from storm devastated forests need also to be considered within the national biomass valorization policies. This has motivated the present work on whether the carbonization process can be used to valorize alternative woody biomasses not currently used on a large scale. For this purpose, slow pyrolysis experiments were carried out with ten types of wood, using a fixed bed reactor allowing the controlled heating of large fuel particles at 0.1 to 5 °C/min and final temperatures within 300–450 °C. Apart from an evaluation of the mass balance of the process, emphasis was given to the properties of the resulting charcoals considering its major market in Portugal—barbecue charcoal for both recreational and professional purposes.


Author(s):  
A. Brito ◽  
M. E. Borges ◽  
R. Arvelo ◽  
F. Garcia ◽  
M. C. Diaz ◽  
...  

The transesterification reaction is the most utilized process to obtain biodiesel. Fried oil transesterification reactions with methanol have been studied using several zeolites Y and interchanged with CsCl and KOH. The reaction has been carried out both in a slurry reactor and a fixed bed catalytic reactor. The catalytic effects of zeolites have been tested within a temperature range of 60-476°C, 2.5-5% catalyst/waste oil weight ratio, and 6:1 - 100:1 methanol/oil molar ratio. Cosolvents (THF, n-hexane) in the reaction feedstock effect have also been studied as well as catalyst regeneration effects. Viscosity of both the oil and the transesterification reaction products was determined as an initial guide to investigate the degree of conversion to biodiesel as well as FAME content by GC. When interchanged zeolites are used conversions are improved, getting the best yields (98% FAME) for the Y756 zeolite interchanged with KOH. Viscosities of the reaction product obtained reached values next to diesel standard ones.


Sign in / Sign up

Export Citation Format

Share Document