scholarly journals Comparison of a Bioelectrical Impedance Device against the Reference Method Dual Energy X-Ray Absorptiometry and Anthropometry for the Evaluation of Body Composition in Adults

Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1469 ◽  
Author(s):  
Kaitlin Day ◽  
Alastair Kwok ◽  
Alison Evans ◽  
Fernanda Mata ◽  
Antonio Verdejo-Garcia ◽  
...  

This study aimed to compare the use of the bioelectrical impedance device (BIA) seca® mBCA 515 using dual X-ray absorptiometry (DXA) as a reference method, for body composition assessment in adults across the spectrum of body mass indices. It explores the utility of simple anthropometric measures (the waist height ratio (WHtR) and waist circumference (WC)) for the assessment of obesity. In the morning after an overnight fast (10 h), 30 participants underwent a body composition DXA (GE iDXA) scan, BIA (seca 515), and anthropometric measures. Compared to the DXA reference measure, the BIA underestimated fat mass (FM) by 0.32 kg (limits of agreement −3.8 kg, 4.4 kg); overestimated fat free mass (FFM) by 0.43 kg (limits of agreement −8.2 kg, 4.3 kg). Some of the variation was explained by body mass index (BMI), as for FM, the mean difference of the normal range BMI group was smaller than for the overweight/obese group (0.25 kg and 0.35 kg, respectively) with wider limits of agreement (−4.30 kg, 4.81 kg, and −3.61 kg, 4.30 kg, respectively). There were significant differences in visceral adipose tissue (VAT) volume measurements between methods with BIA systematically overestimating VAT compared to DXA. WC was more strongly correlated with DXA FM (rho = 0.90, p < 0.001) than WHtR (rho = 0.83, p < 0.001). BIA had some agreement with DXA; however, they are not equivalent measures for the range of BMIs explored, with DXA remaining the more informative tool. WC is a useful and simple assessment tool for obesity.

2019 ◽  
Vol 65 (10) ◽  
pp. 1283-1289
Author(s):  
Christophe Domingos ◽  
Catarina Nunes Matias ◽  
Edilson Serpeloni Cyrino ◽  
Luís Bettencourt Sardinha ◽  
Analiza Mónica Silva

SUMMARY Body composition assessment at the molecular level is relevant for the athletic population and its association with high performance is well recognized. The four-compartment molecular model (4C) is the reference method for fat mass (FM) and fat-free mass (FFM) estimation. However, its implementation in a real context is not feasible. Coaches and athletes need practical body composition methods for body composition assessment, and the bioelectrical impedance analysis method (BIA) is usually seen as a useful alternative. The aim of this study was to test the validity of BIA (Tanita, TBF-310) to determine the FM and FFM of elite judo athletes. A total of 29 males were evaluated in a period of weight stability using the reference method (4C) and the alternative method (Tanita, TBF-310). Regarding the 4C method, total-body water was assessed by deuterium dilution, bone mineral by DXA, and body volume by air displacement plethysmography. The slops and intercepts differed from 1 (0.39 and 1.11) and 0 (4.24 and -6.41) for FM and FFM, respectively. FM from Tanita TBF-310 overestimated the 4C method by 0.2 kg although no differences were found for FFM. Tanita TBF-310 explained 21% and 72% respectively in the estimation of absolute values of FM and FFM from the 4C method. Limits of agreement were significant, varying from -6.7 kg to 7.0 kg for FM and from -8.9 kg to 7.5 kg for FFM. In conclusion, TBF-310 Tanita is not a valid alternative method for estimating body composition in highly trained judo athletes.


2018 ◽  
Author(s):  
Carla M Prado ◽  
Camila LP Oliveira ◽  
M Cristina Gonzalez ◽  
Steven B Heymsfield

Body composition assessment is an important tool in both clinical and research settings able to characterize the nutritional status of individuals in various physiologic and pathologic conditions. Health care professionals can use the information acquired by body composition analysis for the prevention and treatment of diseases, ultimately improving health status. Here we describe commonly used techniques to assess body composition in healthy individuals, including dual-energy x-ray absorptiometry, bioelectrical impedance analysis, air displacement plethysmography, and ultrasonography. Understanding the key underlying concept(s) of each assessment method, as well as its advantages and limitations, facilitates selection of the method of choice and the method of the compartment of interest. This review contains 5 figures, 3 tables and 52 references Key words: air displacement plethysmography, bioelectrical impedance analysis, body composition, disease, dual-energy x-ray absorptiometry, health, muscle mass, nutritional status, obesity, sarcopenia, ultrasound fat mass


2010 ◽  
Vol 54 (1) ◽  
pp. 24-29 ◽  
Author(s):  
Alexis D. Guedes ◽  
Bianca Bianco ◽  
Mônica V. N. Lipay ◽  
Emmanuela Q. Callou ◽  
Marise L. Castro ◽  
...  

INTRODUCTION: Cardiovascular disease is one of the main causes for Turner syndrome (TS) mortality and the evaluation of its risk factors such as excess body fat and its distribution is considered one of the major aspects of the adult patient care. OBJECTIVE: To develop and validate a specific bioelectrical impedance analysis (BIA) equation to predict body composition in TS patients. SUBJECTS AND METHODS: Clinical and anthropometric data, dual-energy X-ray absorptiometry (DXA) for total fat-free mass (FFM) and BIA for resistance and reactance were obtained from 50 adult TS patients. Linear regression analysis was performed with multiple clinical and BIA data to obtain a predicting equation. RESULTS: The equation developed to estimate FFM in adult TS patients showed great consistency with DXA, elevated correlation (r = 0. 974) and determination (r² = 0. 948) coefficients and an adequate standard error estimate (SEE = 1.52 kg). CONCLUSIONS: The specific equation developed here allowed making an adequate FFM estimate in adult TS patients.


1999 ◽  
Vol 87 (3) ◽  
pp. 1114-1122 ◽  
Author(s):  
Willa C. Fornetti ◽  
James M. Pivarnik ◽  
Jeanne M. Foley ◽  
Justus J. Fiechtner

The purpose of this investigation was to determine the reliability and validity of bioelectrical impedance (BIA) and near-infrared interactance (NIR) for estimating body composition in female athletes. Dual-energy X-ray absorptiometry was used as the criterion measure for fat-free mass (FFM). Studies were performed in 132 athletes [age = 20.4 ± 1.5 (SD) yr]. Intraclass reliabilities (repeat and single trial) were 0.987–0.997 for BIA (resistance and reactance) and 0.957–0.980 for NIR (optical densities). Validity of BIA and NIR was assessed by double cross-validation. Because correlations were high ( r = 0.969–0.983) and prediction errors low, a single equation was developed by using all 132 subjects for both BIA and NIR. Also, an equation was developed for all subjects by using height and weight only. Results from dual-energy X-ray absorptiometry analysis showed FFM = 49.5 ± 6.0 kg, which corresponded to %body fat (%BF) of 20.4 ± 3.1%. BIA predicted FFM at 49.4 ± 5.9 kg ( r = 0.981, SEE = 1.1), and NIR prediction was 49.5 ± 5.8 kg ( r = 0.975, SEE = 1.2). Height and weight alone predicted FFM at 49.4 ± 5.7 kg ( r = 0.961, SEE = 1.6). When converted to %BF, prediction errors were ∼1.8% for BIA and NIR and 2.9% for height and weight. Results showed BIA and NIR to be extremely reliable and valid techniques for estimating body composition in college-age female athletes.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Kulapong Jayanama ◽  
Supanee Putadechakun ◽  
Praopilad Srisuwarn ◽  
Sakda Arj-Ong Vallibhakara ◽  
Prapimporn Chattranukulchai Shantavasinkul ◽  
...  

Background. Body composition measurement is very important for early nutritional care in hemodialysis patients. Dual-energy X-ray absorptiometry (DXA) is a gold standard test, but clinically limited. Bioelectrical impedance analysis (BIA) with multifrequency technique is a practical and reliable tool. Objective. This cross-sectional study was aimed to compare the agreement of BIA with DXA in measurement of body composition in hemodialysis patients and to evaluate their associated factors. Methods. Body composition was measured by 2 BIA methods (InBody S10 and InBody 720) and DXA after a hemodialysis session. A total of 69 measurements were included. Pearson’s correlation and Bland and Altman analysis were used to determine the correlation of body composition between methods and to compare the methods agreement, respectively. Results. The correlation coefficients of body compositions were strong between DXA and InBody S10 (fat mass index (FMI): r=0.95, fat-free mass index (FFMI): r=0.78) and also between DXA and InBody 720 (FMI: r=0.96, FFMI: r=0.81). Comparing to DXA, the means of each body composition measured by InBody S10 method were not significantly different in each gender, but differences were found in FM, %FM, and FMI measured by InBody 720. Conclusions. In maintenance hemodialysis patients, the measurement of body composition with DXA and both BIA methods had highly significant correlations; practically, BIA method could be used as an instrument to follow FM and FFM and to measure the edematous stage. Further studies with large populations are warranted.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Masae Miyatani ◽  
Pearl Yang ◽  
Scott Thomas ◽  
B. Catharine Craven ◽  
Paul Oh

We aimed to compare the level of agreement between leg-to-leg bioelectrical impedance analysis (LBIA) and dual-energy X-ray absorptiometry (DXA) for assessing changes in body composition following exercise intervention among individuals with Type 2 diabetes mellitus (T2DM). Forty-four adults with T2DM, age53.2±9.1years; BMI30.8±5.9 kg/m2participated in a 6-month exercise program with pre and post intervention assessments of body composition. Fat free mass (FFM), % body fat (%FM) and fat mass (FM) were measured by LBIA (TBF-300A) and DXA. LBIA assessments of changes in %FM and FM post intervention showed good relative agreements with DXA variables (P<0.001). However, Bland-Altman plot(s) indicated that there were systematic errors in the assessment of the changes in body composition using LBIA compared to DXA such that, the greater the changes in participant body composition, the greater the disparity in body composition data obtained via LBIA versus DXA data (FFM,P=0.013; %FM,P<0.001; FM,P<0.001). In conclusion, assessment of pre and post intervention body composition implies that LBIA is a good tool for assessment qualitative change in body composition (gain or loss) among people with T2DM but is not sufficiently sensitive to track quantitative changes in an individual’s body composition.


2006 ◽  
Vol 91 (8) ◽  
pp. 2952-2959 ◽  
Author(s):  
John G. Esposito ◽  
Scott G. Thomas ◽  
Lori Kingdon ◽  
Shereen Ezzat

Abstract Context: Bioelectrical impedance spectroscopy (BIS) and skinfold anthropometry (SKF) have been used to monitor body composition among patients with HIV wasting; however, validation of these techniques during recombinant human GH (rhGH) treatment has not been performed. Objective: Our objective was to evaluate the degree of agreement between criterion measurements of dual-energy x-ray absorptiometry (DXA) and those of BIS and SKF in patients with HIV wasting treated with rhGH. Design and Setting: We conducted a randomized, double-blinded, placebo-controlled, two-period crossover trial at the University of Toronto and Mount Sinai Hospital (Toronto, Canada). Patients: A referred sample of 27 community-dwelling men with HIV-associated weight loss (≥10% over preceding 12 months) despite optimal antiretroviral therapy participated in the study. Intervention: Intervention was one daily injection of rhGH (6 mg) or placebo self-administered for 3 months in a crossover fashion with a 3-month washout. Main Outcome Measures: Fat-free mass (FFM) and fat mass (FM) were measured by BIS, SKF, and DXA before and after rhGH and placebo treatment. Results: FFMBIS was not significantly different from FFMDXA after rhGH treatment (P = 0.10). Mean differences (bias ± sd) according to Bland-Altman analysis were smaller for SKF than for BIS (P &lt; 0.05) at all time points, yet treatment-induced change in FM was better detected with BIS than with SKF. BIS estimates of FFM and FM showed better agreement with those of DXA after rhGH treatment (1.6 ± 4.6 kg and −2.1 ± 3.9 kg) compared with baseline (3.8 ± 3.5 kg and −4.1 ± 3.6 kg) and placebo (2.7 ± 4.4 kg and −3.1 ± 4.6) (P &lt; 0.05). BIS overestimated and SKF underestimated the treatment-induced changes in FFM and FM. Conclusions: SKF was more accurate than BIS when measuring body composition in patients with HIV wasting before and after rhGH treatment; nonetheless, the accuracy of BIS increased after treatment. Change in FM because of treatment was not accurately assessed with SKF.


2014 ◽  
Vol 112 (7) ◽  
pp. 1147-1153
Author(s):  
Bharati Kulkarni ◽  
Hannah Kuper ◽  
Amy Taylor ◽  
Jonathan C. Wells ◽  
K. V. Radhakrishna ◽  
...  

Dual-energy X-ray absorptiometry (DXA) and isotope dilution technique have been used as reference methods to validate the estimates of body composition by simple field techniques; however, very few studies have compared these two methods. We compared the estimates of body composition by DXA and isotope dilution (18O) technique in apparently healthy Indian men and women (aged 19–70 years,n152, 48 % men) with a wide range of BMI (14–40 kg/m2). Isotopic enrichment was assessed by isotope ratio mass spectroscopy. The agreement between the estimates of body composition measured by the two techniques was assessed by the Bland–Altman method. The mean age and BMI were 37 (sd15) years and 23·3 (sd5·1) kg/m2, respectively, for men and 37 (sd14) years and 24·1 (sd5·8) kg/m2, respectively, for women. The estimates of fat-free mass were higher by about 7 (95 % CI 6, 9) %, those of fat mass were lower by about 21 (95 % CI − 18, − 23) %, and those of body fat percentage (BF%) were lower by about 7·4 (95 % CI − 8·2, − 6·6) % as obtained by DXA compared with the isotope dilution technique. The Bland–Altman analysis showed wide limits of agreement that indicated poor agreement between the methods. The bias in the estimates of BF% was higher at the lower values of BF%. Thus, the two commonly used reference methods showed substantial differences in the estimates of body composition with wide limits of agreement. As the estimates of body composition are method-dependent, the two methods cannot be used interchangeably.


Sign in / Sign up

Export Citation Format

Share Document