Energy expenditure and nutrition status of ballet, jazz and contemporary dance students

2017 ◽  
Vol 7 (1) ◽  
pp. 31-38 ◽  
Author(s):  
D. Rossiou ◽  
S. Papadopoulou ◽  
I. Pagkalos ◽  
A. Kokkinopoulou ◽  
D. Petridis ◽  
...  

Purpose: To evaluate of the energy expenditure in 3 types of dance classes (ballet, Jazz, and contemporary), as well as of the daily energy balance depending on dance type. Materials and methods: 40 females attending dance classes with a median age of 21.0 (19.0-25.0) and 10 males with a median age of 27.0 (20.0-28.0) participated in this study. The energy cost of each dance class was measured using the BodyMedia SenseWear Sensor and total daily energy expenditure was evaluated using a 3-day recording of physical activity. The dietary intake was evaluated with a 3-day food diary recording. Statistical analysis was performed using the SPSS software. Results: Median energy expenditure varied from 306 (277-328) Kcals/class for contemporary dance to 327 (290-355) Kcals/class for ballet and 369 (333-394) Kcals/class for jazz for females with significant differences between contemporary and jazz classes. For males, energy expenditure was 508 (447-589) Kcals/class and 564 (538-593) Kcals/class for ballet and jazz classes, respectively. Females had lower values for all anthropometric measurements, energy intake, macronutrient intakes, and energy expenditure, compared with males. The anthropometric characteristics did not differ between dance types. Both female and male dance students were in a negative energy balance. Conclusions: The use of sensors such as BodyMedia SenseWear together with keeping daily diaries make measurement of physical activity in dancing reliable and accurate. Exercise expenditure differs across types of dance in females but not in males. Both sexes had inadequate energy and carbohydrate intakes.

Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 92
Author(s):  
Cinzia Franchini ◽  
Alice Rosi ◽  
Cristian Ricci ◽  
Francesca Scazzina

Children’s energy requirements may vary during school and summer camp days. To evaluate energy balance during these two periods, seventy-eight children (45% females, 8–10 years) living in Parma, Italy, were enrolled in this observational study. Participants completed a 3-day food diary and wore an activity tracker for three consecutive days during a school- and a summer camp-week to estimate energy intake (EI) and energy expenditure (TEE). Height and body weight were measured at the beginning of each period to define children’s weight status. BMI and EI (school: 1692 ± 265 kcal/day; summer camp: 1738 ± 262 kcal/day) were similar during both periods. Both physical activity and TEE (summer camp: 1948 ± 312; school: 1704 ± 263 kcal/day) were higher during summer camp compared to school time. Therefore, energy balance was more negative during summer camp (−209 ± 366 kcal/day) compared to school time (−12 ± 331 kcal/day). Similar results were observed when males and females were analyzed separately but, comparing the sexes, males had a higher TEE and a more negative energy balance than females, during both periods. The results strongly suggest that an accurate evaluation of children’s energy balance, that considers both diet and physical activity, is needed when planning adequate diets for different situations.


2021 ◽  
Author(s):  
Patrick Mullie ◽  
Pieter Maes ◽  
Laurens van Veelen ◽  
Damien Van Tiggelen ◽  
Peter Clarys

ABSTRACT Introduction Adequate energy supply is a prerequisite for optimal performances and recovery. The aims of the present study were to estimate energy balance and energy availability during a selection course for Belgian paratroopers. Methods Energy expenditure by physical activity was measured with accelerometer (ActiGraph GT3X+, ActiGraph LLC, Pensacola, FL, USA) and rest metabolic rate in Cal.d−1 with Tinsley et al.’s equation based on fat-free mass = 25.9 × fat-free mass in kg + 284. Participants had only access to the French individual combat rations of 3,600 Cal.d−1, and body fat mass was measured with quadripolar impedance (Omron BF508, Omron, Osaka, Japan). Energy availability was calculated by the formula: ([energy intake in foods and beverages] − [energy expenditure physical activity])/kg FFM−1.d−1, with FFM = fat-free mass. Results Mean (SD) age of the 35 participants was 25.1 (4.18) years, and mean (SD) percentage fat mass was 12.0% (3.82). Mean (SD) total energy expenditure, i.e., the sum of rest metabolic rate, dietary-induced thermogenesis, and physical activity, was 5,262 Cal.d−1 (621.2), with percentile 25 at 4,791 Cal.d−1 and percentile 75 at 5,647 Cal.d−1, a difference of 856 Cal.d−1. Mean daily energy intake was 3,600 Cal.d−1, giving a negative energy balance of 1,662 (621.2) Cal.d−1. Mean energy availability was 9.3 Cal.kg FFM−1.d−1. Eleven of the 35 participants performed with a negative energy balance of 2,000 Cal.d−1, and only five participants out of 35 participants performed at a less than 1,000 Cal.d−1 negative energy balance level. Conclusions Energy intake is not optimal as indicated by the negative energy balance and the low energy availability, which means that the participants to this selection course had to perform in suboptimal conditions.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2533 ◽  
Author(s):  
Christopher L. Melby ◽  
Hunter L. Paris ◽  
R. Drew Sayer ◽  
Christopher Bell ◽  
James O. Hill

Long-term maintenance of weight loss requires sustained energy balance at the reduced body weight. This could be attained by coupling low total daily energy intake (TDEI) with low total daily energy expenditure (TDEE; low energy flux), or by pairing high TDEI with high TDEE (high energy flux). Within an environment characterized by high energy dense food and a lack of need for movement, it may be particularly difficult for weight-reduced individuals to maintain energy balance in a low flux state. Most of these individuals will increase body mass due to an inability to sustain the necessary level of food restriction. This increase in TDEI may lead to the re-establishment of high energy flux at or near the original body weight. We propose that following weight loss, increasing physical activity can effectively re-establish a state of high energy flux without significant weight regain. Although the effect of extremely high levels of physical activity on TDEE may be constrained by compensatory reductions in non-activity energy expenditure, moderate increases following weight loss may elevate energy flux and encourage physiological adaptations favorable to weight loss maintenance, including better appetite regulation. It may be time to recognize that few individuals are able to re-establish energy balance at a lower body weight without permanent increases in physical activity. Accordingly, there is an urgent need for more research to better understand the role of energy flux in long-term weight maintenance.


1994 ◽  
Vol 77 (1) ◽  
pp. 366-372 ◽  
Author(s):  
M. I. Goran ◽  
J. Calles-Escandon ◽  
E. T. Poehlman ◽  
M. O'Connell ◽  
E. Danforth

This study was designed to examine effects of alterations in energy balance on adaptive changes in components of total energy expenditure (TEE). Nineteen young healthy males were studied during a 10-day sedentary energy balance baseline period and then randomly assigned to one of four 10-day treatment groups: 1) no change in energy intake (EI) or physical activity (PA; energy balance at low energy flux), 2) EI increased by 50% with no change in PA (positive energy balance), 3) TEE increased by 50% by increasing PA, matched by a 50% increase in EI (energy balance at high energy flux), and 4) TEE increased by 50% by increasing PA with no change in EI (negative energy balance). TEE was measured with doubly labeled water, resting metabolic rate (RMR) by indirect calorimetry, and thermic response to feeding (TEF) by indirect calorimetry; energy expenditure of physical activity (EEPA) was estimated by subtracting RMR, TEF, and prescribed PA from TEE. TEE was significantly increased by PA (by design) but not EI. There was a significant main effect of intake and a significant intake-by-activity interaction for changes in RMR. In post hoc analysis, RMR was significantly increased during positive energy balance and energy balance at high energy flux relative to change in RMR when energy balance was maintained at low energy flux. A significant increase in RMR was also noted during negative energy balance after adjustment for change in fat-free mass. There was no significant difference in change in RMR among the three treatment groups.(ABSTRACT TRUNCATED AT 250 WORDS)


2018 ◽  
Vol 165 (5) ◽  
pp. 325-329 ◽  
Author(s):  
Patrick Mullie ◽  
P Clarys ◽  
W De Bry ◽  
P Geeraerts

IntroductionThe Special Forces (SF) are an elite military group usually engaged in physically demanding field operations, resulting among others in high daily energy requirements. Optimising energy supply and nutritional requirements is therefore mandatory for success. The aim of this study was to estimate energy availability and nutrition during a Qualification Course (Q-Course) for Belgian SF.Methods21 participants recorded all foods and beverages consumed during four days in a structured food diary. Energy expenditure was measured with an accelerometer and fat mass measured with quadripolar impedance. Energy availability was calculated by the following formula: (energy intake by foods and beverages − energy expenditure for physical activity)/kg FFM/day (FFM, fat-free mass).ResultsThe mean (SD) total energy expenditure was 4926 kcal/day (238), with a minimum of 4645 kcal/day and a maximum of 5472 kcal/day. The mean (SD) total energy consumption was 4186 kcal/day (842), giving an energy balance ranging from −2005 kcal/day to 1113 kcal/day. The mean (SD) energy availability was 17 kcal/kg FFM/day, with a minimum of 1 kcal/kg FFM/day and a maximum of 44 kcal/kg FFM/day. The mean (SD) intake of carbohydrates was 6.8 g/kg body weight/day (1.5).ConclusionsDuring this studied Q-Course, energy intake was not optimal as demonstrated by an overall negative energy balance and low energy availability. High interindividual variations in energy intake were found, highlighting the importance of providing SF members nutritional education.


Retos ◽  
2019 ◽  
pp. 309-311
Author(s):  
Francisco Javier Morente Ponce ◽  
Africa Calvo Lluch

El propósito de nuestro estudio fue determinar el gasto calórico en bailarines de danza contemporánea y relacionarlo con su ingesta para poder identificar el balance energético; todo esto se llevo a cabo durante el periodo de actuaciones de dichos bailarines. Diez estudiantes de la modalidad de danza contemporánea, cinco hombres con una edad media 25 ± 5,08 y cinco mujeres de 21 ± 2,51 años años participaron en este estudio. Sin embargo, debido a una inesperada cancelación se produjo una muerte muestral de dos sujetos hombre. Durante un período de 3 días consecutivos el gasto energético diario total fue medido usando el sensor metabólico BodyMedia SenseWear y la ingesta calórica fue recopilada a través una historia nutricional de recuerdo de 24 h y transformada a ingesta energética diaria con el software informático DIAL. Los resultados arrojaron un balance energético negativo en hombres de –1.623, 27 ± 626, 76 kilocalorías por día (Kcal/d) y en mujeres de –1.196,87 ± 360, 28 Kcal/d. Se puede concluir que los bailarines tuvieron ingestas calóricas bajas, lo que condujo a un balance energético negativo. Estos resultados hacen pensar que las altas demandas energéticas de los bailarines de danza contemporánea obligan a aumentar la ingesta alimentaria en entrenamientos y días de función. Los bailarines de danza contemporánea pueden estar en riesgo de numerosos problemas de salud y rendimiento asociados con un balance energético negativo, particularmente durante los períodos de entrenamiento.Summary: the purpose of our study was to determine the caloric expenditure in dancers of contemporary dance and relate it to their intake, so to identify their energy balance; the research took place during the dancers’ period of performances. Ten students of contemporary dance modality, five men with an average age of 25 ± 5.08 years old, and five women aged 21 ± 2.51 years old, participated in this study. However, due to an unexpected cancellation there was a dropout of two male subjects. During a period of 3 consecutive days, the total daily energy expenditure was measured using BodyMedia SenseWear metabolic sensors, while caloric intake was collected through a nutritional 24h recall instrument and then transformed to daily energy intake with the DIAL computer software. The results showed a negative energy balance in men (-1.623,27 ± 626; 76 Kcal/d) and in women (- 1.196,87 ± 360; 28 Kcal/d). It can be concluded that dancers had low caloric intakes, which led to a negative energy balance. These results suggest that the high energetic demands of contemporary dance dancers should drive to an increase in food intake during training and performance days. Contemporary dancers may be at risk for numerous health and performance problems associated with a negative energy balance, particularly during periods of training.


2003 ◽  
Vol 62 (3) ◽  
pp. 645-650 ◽  
Author(s):  
Klaas R. Westerterp

Activity intensity is a potential determinant of activity-induced energy expenditure. Tri-axial accelerometery is the most objective measurement technique for the assessment of activity intensity, in combination with doubly-labelled water for the measurement of energy expenditure under free-living conditions. Data on the effects of subject characteristics, including body size and age, and exercise training on the relationship between activity intensity and daily energy expenditure are reviewed. Average daily metabolic rate and non-basal energy expenditure are positively related to body size. The duration and intensity of physical activities do not need to be equivalent to the energy spent on activity. Obese subjects spend more energy on physical activity but can perform fewer activities, especially high-intensity (weight-bearing) activities, because of their higher body weight. Physical activity generally declines gradually from about 60 years of age onwards. Most subjects >80 years have an activity level well below the level defined for sedentary middle-aged adults. Spending relatively more time on low-intensity activities has a negative effect on the mean physical activity level. To obtain a higher physical activity level does not necessarily imply high-intensity activities. In an average subject 25% of the activity-induced energy expenditure may be attributed to high-intensity activities. Exercise training, as a form of high-intensity activity, affects the physical activity level more in younger subjects than in elderly subjects.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3394
Author(s):  
Sarah A. Purcell ◽  
Ryan J. Marker ◽  
Marc-Andre Cornier ◽  
Edward L. Melanson

Many breast cancer survivors (BCS) gain fat mass and lose fat-free mass during treatment (chemotherapy, radiation, surgery) and estrogen suppression therapy, which increases the risk of developing comorbidities. Whether these body composition alterations are a result of changes in dietary intake, energy expenditure, or both is unclear. Thus, we reviewed studies that have measured components of energy balance in BCS who have completed treatment. Longitudinal studies suggest that BCS reduce self-reported energy intake and increase fruit and vegetable consumption. Although some evidence suggests that resting metabolic rate is higher in BCS than in age-matched controls, no study has measured total daily energy expenditure (TDEE) in this population. Whether physical activity levels are altered in BCS is unclear, but evidence suggests that light-intensity physical activity is lower in BCS compared to age-matched controls. We also discuss the mechanisms through which estrogen suppression may impact energy balance and develop a theoretical framework of dietary intake and TDEE interactions in BCS. Preclinical and human experimental studies indicate that estrogen suppression likely elicits increased energy intake and decreased TDEE, although this has not been systematically investigated in BCS specifically. Estrogen suppression may modulate energy balance via alterations in appetite, fat-free mass, resting metabolic rate, and physical activity. There are several potential areas for future mechanistic energetic research in BCS (e.g., characterizing predictors of intervention response, appetite, dynamic changes in energy balance, and differences in cancer sub-types) that would ultimately support the development of more targeted and personalized behavioral interventions.


2017 ◽  
Vol 27 (3) ◽  
pp. 423-430 ◽  
Author(s):  
Timothy J. O’Neal ◽  
Danielle M. Friend ◽  
Juen Guo ◽  
Kevin D. Hall ◽  
Alexxai V. Kravitz

Sign in / Sign up

Export Citation Format

Share Document