scholarly journals Wikstroemia ganpi Extract Improved Atopic Dermatitis-Like Skin Lesions via Suppression of Interleukin-4 in 2,4-Dinitrochlorobenzene-Induced SKH-1 Hairless Mice

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2016
Author(s):  
Jonghwan Jegal ◽  
No-June Park ◽  
Beom-Geun Jo ◽  
Tae-Young Kim ◽  
Sim-Kyu Bong ◽  
...  

Plants of the genus Wikstroemia are used in Chinese traditional medicine to treat inflammatory diseases, such as arthritis, bronchitis, and pneumonia. The present study was designed to determine whether Wikstroemia ganpi (Siebold and Zucc.) Maxim. offers a potential means of treating 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) in mice. Symptoms such as redness, edema, and keratinization in AD mice induced by DNCB were alleviated by the co-application of an ethanolic extract of W. ganpi for 2 weeks. The severity of skin barrier function damage was evaluated by measuring TEWL (transepidermal water loss). TEWLs of DNCB sensitized mouse dorsal skin were reduced by the application of a W. ganpi ethanolic extract, and skin hydration was increased. In addition, the infiltration of inflammatory cells into the dermis was significantly reduced, as were blood levels of IgE and IL-4, which play an important role in the expression of AD. The results of this experiment suggest that W. ganpi is a potential therapeutic agent for AD.

Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 249 ◽  
Author(s):  
Kim ◽  
Seong ◽  
Choung

Morinda citrifolia, a fruit generally known as “Noni”, has been traditionally used in parts of East Asia to relieve inflammatory diseases. Although several studies using noni have been reported, the effect of fermented Morinda citrifolia (F.NONI) on atopic dermatitis (AD) has not been investigated. Thus, we aimed to investigate the improving effect of F.NONI treatment on AD-like skin lesions and elucidate molecular mechanisms. F.NONI was prepared by the fermentation of noni fruit with probiotics and then extracted. F.NONI was orally administrated to NC/Nga mice to evaluate its therapeutic effect on 2,4-dinitrochlorobenzene (DNCB)-induced AD. Oral administration of F.NONI significantly alleviated AD lesions and symptoms such as dermatitis scores, ear thickness, scratching behavior, epidermal thickness, and infiltration of inflammatory cells (e.g., mast cells and eosinophils). In addition, F.NONI treatment reduced the levels of histamine, IgE and IgG1/IgG2a ratio, thymus and activation regulated chemokine (TARC), and thymic stromal lymphopoietin (TSLP) in serum and beneficially modulated the expressions of Th1, Th2, Th17, and Th22-mediated cytokines in lesioned skin and splenocytes. Furthermore, the expressions of the skin barrier-related proteins including filaggrin (FLG), loricrin (LOR), involucrin (IVL), zonula occludens-1 (ZO-1), and occludin (OCC) were restored by F.NONI treatment. Taken together, these results suggest that F.NONI could be a therapeutic agent to attenuate AD-like skin lesions through modulating the immune balance and skin barrier function.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 914 ◽  
Author(s):  
Jonghwan Jegal ◽  
No-June Park ◽  
Tae-Young Kim ◽  
Sangho Choi ◽  
Sang Woo Lee ◽  
...  

Plants of the genus Wikstroemia are traditionally used to treat inflammatory diseases like bronchitis and rheumatoid arthritis. In the present study, the anti-atopic effects of an EtOH extract of Wikstroemia dolichantha (WDE) on oxazolone- and DNCB (2,4-dinitrochlorobenzene)-induced dermatitis in mice were investigated. Both ears of BALB/c mice were exposed to oxazolone, and dorsal skins of SKH-1 hairless mice were sensitized with DNCB to induce acute eczematous atopic skin lesions. 1% WDE was applied daily to oxazolone- and DNCB-induced AD mice for two or three weeks, respectively. Total IL-4 and IgE concentrations in serum, transepidermal water loss (TEWL) and skin hydration were assessed. High-performance liquid chromatography/mass spectrometry (HPLC/MS) was used to determine the composition of WDE. Dermal application of 1% WDE grossly and histopathologically improved oxazolone- and DNCB-induced AD skin symptoms. Epidermal thickness and mast cell infiltration were significantly lower in animals treated with WDE than in vehicle controls. Furthermore, in addition to reducing DNCB-induced increases in serum IL-4 (interleukin 4) and IgE (immunoglobulin E) levels, WDE also decreased TEWL and increased skin hydration (indicative of improved skin barrier function). The four flavonoids taxifolin, aromadendrin, padmatin and chamaejasmine were tentatively identified in WDE by HPLC-DAD/QTOF-MS. The above results show WDE protected against oxazolone- and DNCB-induced AD in mice by down-regulating the TH2-associated cytokine IL-4 and improving skin barrier function and suggest WDE might be useful for the management of atopic dermatitis.


Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 697 ◽  
Author(s):  
Tae-Young Kim ◽  
No-June Park ◽  
Jonghwan Jegal ◽  
Sangho Choi ◽  
Sang Woo Lee ◽  
...  

Plants of the genus Wikstroemia have long been used as traditional medicines to treat diseases like pneumonia, rheumatism, and bronchitis. This study was designed to determine the effect of chamaejasmine, a biflavonoid present in W. dolichantha, on atopic dermatitis (AD)-like skin lesions in a 2,4-dinitrochlorobenzene (DNCB)-induced murine model of AD. Initially, we examined the anti-allergic activities of ten flavonoids from W. dolichantha by measuring β-hexosaminidase release from RBL-2H3 cells. Subsequently, an SKH-1 hairless mouse model of AD was developed based on the topical application of DNCB. Chamaejasmine (0.5%) or pimecrolimus (1%, positive control) were applied to dorsal skins of DNCB-sensitized AD mice for two weeks. Serum IL-4 and IgE levels were determined using enzyme-linked immunosorbent assay kits and transepidermal water loss (TEWL) and skin hydration were measured using a Tewameter TM210 and a SKIN-O-MAT, respectively. Of the ten flavonoids isolated from W. dolichantha, chamaejasmine most potently inhibited DNP-specific IgE-induced degranulation in RBL-2H3 cells. Topical administration of chamaejasmine attenuated the clinical symptoms of DNCB-induced dermatitis (i.e., itching, dryness, erythema, and edema). Histological analyses demonstrated that dermal thickness and mast cell infiltration in dermis were significantly reduced by chamaejasmine. In addition, 0.5% chamaejasmine inhibited DNCB-induced increases in total IL-4 and IgE levels in serum, improved skin barrier function, and increased epidermis moisture. Our findings suggest chamaejasmine might be an effective therapeutic agent for the treatment of atopic diseases.


2014 ◽  
Vol 11 (4) ◽  
pp. 59-63
Author(s):  
E T KINDEEVA ◽  
N G KOROTKII ◽  
A N PAMPURA

Background. Structural and functional damages of the epidermal barrier in patients with atopic dermatitis promote the entry of allergens and development of Th2-type allergic inflammation. Moisturizers containing lipids increase the physiological antiinflammatory effects of topical corticosteroids (TGKS), improve the epidermal barrier and reduce the duration of TGKS using preventing further infringement barrier. To evaluate the clinical efficacy of emollient milk Xemose in children with atopic dermatitis. Materials and methods. We examined 27 children with atopic dermatitis. Children were divided into 2 groups: patients in group 1 (n=14) used emollient milk Xemose twice a day on the skin lesions and limbs in the complex therapy, patients in the 2nd group (n=13) received combined therapy incorporating traditional dampening agents on the basis of lanolin (Unna cream) 3 times daily. All patients underwent measurement of transepidermal water loss (TEWl) (Tewameter TM 300, Multi Probe Adapter MPA 5/9, Courage + Khazaka) and the pH of the skin (Skin-pH-Meter, Multi Probe Adapter MPA 5/9, Courage + Khazaka) before and after 2 weeks of therapy. Results. Patients in groupthat used Xemose milk and children in group with Unna cream after 2 weeks showed a statistically significant decrease of TEWl (p=0,041 and p=0,04, respectively). TEWl was significantly lower in children treated for 2 weeks with milk Xemose (p=0,027) than in children treated with Unna cream. in both groups pH skin surface have not changed (р=0,22 and р=0,22 respectively). Conclusion. Clinical efficacy of milk Xemose as compound improving skin barrier function in children with atopic dermatitis was shown.


Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 173 ◽  
Author(s):  
So-Yeon Lee ◽  
No-June Park ◽  
Jonghwan Jegal ◽  
Beom-Geun Jo ◽  
Sangho Choi ◽  
...  

Wikstroemia indica (L.) C.A. Mey. is used in traditional Chinese medicine to treat inflammatory diseases such as arthritis and bronchitis. In this study, we aimed to investigate the effects of an ethanolic extract of W. indica on cutaneous inflammation in mice with 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD). Dermal administration of W. indica ethanolic extract to DNCB-sensitized hairless mice with dermatitis, for two weeks, reduced erythema, scaling, and edema. Skin hydration was improved and transepidermal water loss was reduced at a W. indica concentration of 1%. Furthermore, W. indica also significantly reduced serum IgE and IL-4 concentrations in our mouse model. These results suggest that W. indica has potential as a topical treatment for AD and as an adjunctive agent to control AD.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 622
Author(s):  
Hyeong Rok Yun ◽  
Sang Woo Ahn ◽  
Bomin Seol ◽  
Elena A. Vasileva ◽  
Natalia P. Mishchenko ◽  
...  

Atopic dermatitis (AD) is a chronic inflammatory skin disease in which skin barrier dysfunction leads to dryness, pruritus, and erythematous lesions. AD is triggered by immune imbalance and oxidative stress. Echinochrome A (Ech A), a natural pigment isolated from sea urchins, exerts antioxidant and beneficial effects in various inflammatory disease models. In the present study, we tested whether Ech A treatment alleviated AD-like skin lesions. We examined the anti-inflammatory effect of Ech A on 2,4-dinitrochlorobenzene (DNCB)-induced AD-like lesions in an NC/Nga mouse model. AD-like skin symptoms were induced by treatment with 1% DNCB for 1 week and 0.4% DNCB for 5 weeks in NC/Nga mice. The results showed that Ech A alleviated AD clinical symptoms, such as edema, erythema, and dryness. Treatment with Ech A induced the recovery of epidermis skin lesions as observed histologically. Tewameter® and Corneometer® measurements indicated that Ech A treatment reduced transepidermal water loss and improved stratum corneum hydration, respectively. Ech A treatment also inhibited inflammatory-response-induced mast cell infiltration in AD-like skin lesions and suppressed the expression of proinflammatory cytokines, such as interferon-γ, interleukin-4, and interleukin-13. Collectively, these results suggest that Ech A may be beneficial for treating AD owing to its anti-inflammatory effects.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Johny Bajgai ◽  
Jing Xingyu ◽  
Ailyn Fadriquela ◽  
Rahima Begum ◽  
Dong Heui Kim ◽  
...  

Abstract Background Atopic dermatitis (AD) is a chronic allergic inflammatory skin disease characterized by complex pathogenesis including skin barrier dysfunction, immune-redox disturbances, and pruritus. Prolonged topical treatment with medications such as corticosteroids, calcineurin inhibitors, and T-cell inhibitors may have some potential side-effects. To this end, many researchers have explored numerous alternative therapies using natural products and mineral compounds with antioxidant or immunomodulatory effects to minimize toxicity and adverse-effects. In the current study, we investigated the effects of mineral complex material (MCM) treatment on 2, 4-dinitrochlorobenzene (DNCB)-induced AD-like skin lesions in SKH-1 hairless mice. Methods Animals were divided into four groups; normal control (NC), negative control treated with DNCB only (DNCB only), positive control treated with DNCB and tacrolimus ointment (PC) and experimental group treated with DNCB and MCM patch (MCM). Skin inflammation and lesion severity were investigated through analyses of skin parameters (barrier score and strength, moisture and trans-epidermal water loss level), histopathology, immunoglobulin E, and cytokines. In addition, reactive oxygen species (ROS), nitric oxide (NO), glutathione peroxidase (GPx), and catalase (CAT) levels were measured in both serum and skin lysate. Results Our results demonstrates that MCM patch improved the progression of AD-like skin lesions by significantly increasing skin barrier strength and decreasing trans-epidermal water loss. Additionally, dermal administration of MCM patch significantly reduced epidermal thickness, ROS, and NO levels in skin lysate. Furthermore, we found that MCM suppressed the levels of AD-involved (Th1 and Th2) cytokines such as IL-2, IFN-γ, and IL-4 in blood. In addition, the levels of other Th1, and Th2 and inflammatory cytokines such as IL-1β, TNF-α, IL-6, IL-12(p70) and IL-10 were found lowest in the MCM group than in the DNCB only and PC groups. Moreover, we found total serum IgE level significantly increased after DNCB treatment, but decreased in the PC and MCM groups. Conclusion Taken together, our findings suggest that MCM application may have beneficial effects either systemic or regional on DNCB-induced AD lesional skin via regulation of the skin barrier function and immune-redox response.


2021 ◽  
Vol 10 (2) ◽  
pp. 359 ◽  
Author(s):  
Trinidad Montero-Vilchez ◽  
María-Victoria Segura-Fernández-Nogueras ◽  
Isabel Pérez-Rodríguez ◽  
Miguel Soler-Gongora ◽  
Antonio Martinez-Lopez ◽  
...  

Multiple diagnostic tools are used to evaluate psoriasis and atopic dermatitis (AD) severity, but most of them are based on subjective components. Transepidermal water loss (TEWL) and temperature are skin barrier function parameters that can be objectively measured and could help clinicians to evaluate disease severity accurately. Thus, the aims of this study are: (1) to compare skin barrier function between healthy skin, psoriatic skin and AD skin; and (2) to assess if skin barrier function parameters could predict disease severity. A cross-sectional study was designed, and epidermal barrier function parameters were measured. The study included 314 participants: 157 healthy individuals, 92 psoriatic patients, and 65 atopic dermatitis patients. TEWL was significantly higher, while stratum corneum hydration (SCH) (8.71 vs. 38.43 vs. 44.39 Arbitrary Units (AU)) was lower at psoriatic plaques than at uninvolved psoriatic skin and healthy controls. Patients with both TEWL > 13.85 g·m−2h−1 and temperature > 30.85 °C presented a moderate/severe psoriasis (psoriasis area severity index (PASI) ≥ 7), with a specificity of 76.3%. TEWL (28.68 vs. 13.15 vs. 11.60 g·m−2 h−1) and temperature were significantly higher, while SCH (25.20 vs. 40.95 vs. 50.73 AU) was lower at AD eczematous lesions than uninvolved AD skin and healthy controls. Patients with a temperature > 31.75 °C presented a moderate/severe AD (SCORing Atopic Dermatitis (SCORAD) ≥ 37) with a sensitivity of 81.8%. In conclusion, temperature and TEWL values may help clinicians to determine disease severity and select patients who need intensive treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ik Jun Moon ◽  
Mi Ra Yun ◽  
Hae Kyeong Yoon ◽  
Keon Hee Lee ◽  
Sun Young Choi ◽  
...  

AbstractCold atmospheric plasma (CAP) has been incorporated into various fields, including promotion of cutaneous wound healing. Atopic dermatitis (AD) is a chronic cutaneous condition characterized by inflammation-induced skin wounds and impaired skin barrier function. To investigate whether CAP may improve AD using an animal model. Dermatophagoides farinae extracts (DFE)-induced murine models of AD were used in this study. The plasma-treated group received a total of 6 CAP treatments during 2 weeks, while the control group did not receive any treatment. Differences in dermatitis severity, transepidermal water loss (TEWL), serum level of immunoglobulin (Ig) E and epidermal thickness were evaluated in both groups. The dermatitis severity was significantly improved by CAP treatment. TEWL was lower in the plasma-treated group compared with the non-treated control group. Serum Ig E dropped significantly after treatment with CAP. Difference in epidermal thickness of the ear skin was not significant between the plasma-treated and non-treated groups. Localized treatment of AD with CAP decreases dermatitis severity, TEWL, and serum Ig E level. These results show CAP’s potentials as a novel therapeutic modality for AD.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 255 ◽  
Author(s):  
Lupe Carolina Espinoza ◽  
Rodrigo Vera-García ◽  
Marcelle Silva-Abreu ◽  
Òscar Domènech ◽  
Josefa Badia ◽  
...  

Pioglitazone (PGZ) is a drug used to treat type 2 diabetes mellitus that has been reported to show additional therapeutic activities on diverse inflammatory parameters. The aim of this study was to optimize a topical PGZ-loaded nanoemulsion (PGZ-NE) in order to evaluate its effectiveness for treating atopic dermatitis (AD). The composition of the nanoformulation was established by pseudo-ternary diagram. Parameters such as physical properties, stability, in vitro release profile, and ex vivo permeation were determined. The efficacy study was carried out using oxazolone-induced AD model in hairless mice. PGZ-NE released the drug following a hyperbolic kinetic. Additionally, its properties provided high retention potential of drug inside the skin. Therapeutic benefits of PGZ-NE were confirmed on diverse events of the inflammatory process, such as reduction of lesions, enhancement of skin barrier function, diminished infiltration of inflammatory cells, and expression of pro-inflammatory cytokines. These results were reinforced by atomic force microscope (AFM), which demonstrated the ability of the formulation to revert the rigidification caused by oxazolone and consequently improve the elasticity of the skin. These results suggest that PGZ-NE may be a promising treatment for inflammatory dermatological conditions such as AD.


Sign in / Sign up

Export Citation Format

Share Document