scholarly journals Antihypertensive Effects of Virgin Olive Oil (Unfiltered) Low Molecular Weight Peptides with ACE Inhibitory Activity in Spontaneously Hypertensive Rats

Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 271 ◽  
Author(s):  
Juan María Alcaide-Hidalgo ◽  
Miguel Romero ◽  
Juan Duarte ◽  
Eduardo López-Huertas

The low molecular weight peptide composition of virgin olive oil (VOO) is mostly unknown. We hypothesised that unfiltered VOO could possess low molecular weight peptides with antihypertensive activity. We produced unfiltered VOO and obtained a water-soluble peptide extract from it. The peptides were separated by size-exclusion using fast protein liquid chromatography, and the low molecular weight fraction was analysed by nanoscale liquid chromatography-Orbitrap coupled with tandem mass spectrometry and de novo sequencing. We selected 23 peptide sequences containing between 6 and 9 amino acids and molecular masses ranging 698–1017 Da. Those peptides were chemically synthesised and their angiotensin-converting enzyme (ACE) inhibitory activity was studied in vitro. Seven peptides showed a strong activity, with half maximal inhibitory concentration (IC50) <10 µm. The antihypertensive effects of the four most active synthesised ACE inhibitor peptides were studied in spontaneously hypertensive rats (SHR). Acute oral administration of synthetic peptides RDGGYCC and CCGNAVPQ showed antihypertensive activity in SHR. We conclude that unfiltered VOO naturally contains low molecular weight peptides with specific ACE inhibitory activity and antihypertensive effects in SHR.

2022 ◽  
Author(s):  
Sijia Wu ◽  
Wenzhu Zhao ◽  
Zhipeng Yu ◽  
Jingbo Liu

Tripeptide NCW identified in our previous study displayed strong ACE inhibitory activity, whether it has the antihypertensive effect in vivo remains unknown. Thus, in this paper, we aimed to investigate...


2019 ◽  
Vol 166 (3) ◽  
pp. 223-230 ◽  
Author(s):  
Yueyuan Zhang ◽  
Yanling Zhang ◽  
Peiyao Chen ◽  
Fengjue Shu ◽  
Kai Li ◽  
...  

AbstractVinegar soaked black soybean is a traditional Chinese food widely used for the treatment of hypertension. While its pharmacodynamic substance was not fully unveiled. It contained abundant glutelin, thus the purpose of this study was to obtain potent antihypertensive peptides from vinegar soaked black soybean. Black soybean was soaked with vinegar and then glutelin was first catalyzed by alcalase. Ultrafiltration, ion exchange chromatography and reversed-phase high performance liquid chromatography were sequentially applied to separate and purify the angiotensin-I converting enzyme (ACE) inhibitory peptides from glutelin hydrolysates. As a result, the fraction L1-4 with the highest ACE inhibitory activity (83.41%) at the final concentration of 0.01 mg/ml was obtained and five peptides were then identified. These peptides were further optimized by virtual screening combining with in silico proteolysis. Finally, a novel tetrapeptide Phe-Gly-Ser-Phe (FGSF) was obtained. FGSF exhibited high in vitro ACE inhibitory activity (IC50 = 117.11 μM) and in vivo hypotensive effect which maximally reduced systolic blood pressure of 21.95 mmHg at 20 mg/kg body weight in spontaneously hypertensive rats. Our study demonstrated that FGSF derived from vinegar soaked black soybean might be used as a promising ingredient for pharmaceuticals against hypertension and its related diseases.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Shumei Mao ◽  
Chengde Li

Objectives. This study aimed to investigate the antihypertensive effects of anEisenia fetidaextract (EFE) and its possible mechanisms in spontaneously hypertensive rats (SHR rats).Methods. Sixteen-week-old SHR rats and Wistar-Kyoto rats (WKY rats) were used in this study. Rats were, respectively, given EFE (EFE group), captopril (captopril group), or phosphate-buffered saline (PBS) (normal control group and SHR group) for 4 weeks. ACE inhibitory activity of EFEin vitrowas determined. The systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured using a Rat Tail-Cuff Blood Pressure System. Levels of angiotensin II (Ang II), aldosterone (Ald), and 6-keto-prostaglandin F1 alpha (6-keto-PGF1α) in plasma were determined by radioimmunoassay, and serum nitric oxide (NO) concentration was measured by Griess reagent systems.Results. EFE had marked ACE inhibitory activityin vitro(IC50= 2.5 mg/mL). After the 4-week drug management, SHR rats in EFE group and in captopril group had lower SBP and DBP, lower levels of Ang II and Ald, and higher levels of 6-keto-PGF1αand NO than the SHR rats in SHR group.Conclusion. These results indicate that EFE has hypotensive effects in SHR rats and its effects might be associated with its ACE inhibitory activity.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 215
Author(s):  
Jessica Lizbeth Sebastián-Nicolas ◽  
Elizabeth Contreras-López ◽  
Juan Ramírez-Godínez ◽  
Alma Elizabeth Cruz-Guerrero ◽  
Gabriela Mariana Rodríguez-Serrano ◽  
...  

Health benefits of probiotics and production of inhibitors of angiotensin converting enzyme (ACE) released during milk fermentation are well known. That is why in this investigation the proteolytic profile and ACE inhibitory capacity of peptide fractions from protein hydrolysis of milk during fermentation processes was analyzed. Milk fermentation was carried out inoculating 106 CFU of L. rhamnosus GG, S. thermophilus SY-102 and with both bacteria. The proteolytic profile was determined using: TNBS, SDS-PAGE and SEC-HPLC techniques. In vitro ACE inhibition capacity was measured. The pH of 4.5 was reached at 56 h when the milk was fermented with L. rhamnosus, at 12 h with S. thermophillus and at 41 h in the co-culture. Production of free amino groups corresponded with the profile of low molecular weight peptides observed by SDS-PAGE and SEC-HPLC. Co-culture fermentation showed both the highest concentration of low molecular weight peptides and the ACE inhibitory activity (>80%). Results indicated that the combination of lactic cultures could be useful in manufacture of fermented milk with an added value that goes beyond basic nutrition, such as the production of ACE-inhibitory peptides.


2017 ◽  
Vol 42 (4) ◽  
Author(s):  
Asif Wali ◽  
Haile Ma ◽  
Muhammad Tayyab Rashid ◽  
Qui Fang Liang

AbstractObjective:The main purpose of this study was to screen effective proteolytic enzymes for producing hydrolysates from rapes protein, and to optimize hydrolysis conditions using response surface design to prepare hydrolysates with maximum ACE inhibitor activity.Methods:RSM design was successfully applied to the hydrolysis conditions on the basis of single factor experiments which further derived a statistical model for experimental validation. The molecular weight distribution of rapeseed protein hydrolysates with different degree of hydrolysis was also investigated.Results:All the proteolytic enzymes tested produced hydrolysates that possessed ACE inhibitory activity. Aiding RSM design the highest ACE inhibitory activity 56.3% was achieved under optimum hydrolysis conditions at the hydrolysis time, pH, hydrolysis temperature, and enzyme dosage were at 90.11 min, 8.88, 50°C and 3580.36 UgConclusion:Enzymatic hydrolysis and response surface methodology found good techniques in order to achieve hydrolysates with maximum ACE inhibitory activity. The findings of current research suggested that the hydrolysates obtained under optimized conditions could be utilized to formulate nutraceuticals and pharmaceuticals


Sign in / Sign up

Export Citation Format

Share Document