scholarly journals Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance

Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1305 ◽  
Author(s):  
Iwona Kojta ◽  
Marta Chacińska ◽  
Agnieszka Błachnio-Zabielska

Obesity is a major risk factor for the development of insulin resistance and type 2 diabetes. The exact mechanism by which adipose tissue induces insulin resistance is still unclear. It has been demonstrated that obesity is associated with the adipocyte dysfunction, macrophage infiltration, and low-grade inflammation, which probably contributes to the induction of insulin resistance. Adipose tissue synthesizes and secretes numerous bioactive molecules, namely adipokines and cytokines, which affect the metabolism of both lipids and glucose. Disorders in the synthesis of adipokines and cytokines that occur in obesity lead to changes in lipid and carbohydrates metabolism and, as a consequence, may lead to insulin resistance and type 2 diabetes. Obesity is also associated with the accumulation of lipids. A special group of lipids that are able to regulate the activity of intracellular enzymes are biologically active lipids: long-chain acyl-CoAs, ceramides, and diacylglycerols. According to the latest data, the accumulation of these lipids in adipocytes is probably related to the development of insulin resistance. Recent studies indicate that the accumulation of biologically active lipids in adipose tissue may regulate the synthesis/secretion of adipokines and proinflammatory cytokines. Although studies have revealed that inflammation caused by excessive fat accumulation and abnormalities in lipid metabolism can contribute to the development of obesity-related insulin resistance, further research is needed to determine the exact mechanism by which obesity-related insulin resistance is induced.

Author(s):  
Charmaine S. Tam ◽  
Leanne M. Redman

AbstractObesity is characterized by a state of chronic low-grade inflammation due to increased immune cells, specifically infiltrated macrophages into adipose tissue, which in turn secrete a range of proinflammatory mediators. This nonselective low-grade inflammation of adipose tissue is systemic in nature and can impair insulin signaling pathways, thus, increasing the risk of developing insulin resistance and type 2 diabetes. The aim of this review is to provide an update on clinical studies examining the role of adipose tissue in the development of obesity-associated complications in humans. We will discuss adipose tissue inflammation during different scenarios of energy imbalance and metabolic dysfunction including obesity and overfeeding, weight loss by calorie restriction or bariatric surgery, and conditions of insulin resistance (diabetes, polycystic ovarian syndrome).


2021 ◽  
pp. 1-13

1. Abstract Insulin Resistance is the leading cause of Type 2 diabetes mellitus (T2D). It occurs as a result of lipid disorders and increased levels of circulating free fatty acids (FFAs). FFAs accumulate within the insulin sensitive tissues such as muscle, liver and adipose tissues exacerbating different molecular mechanisms. Increased levels fatty acid has been documented to be strongly associated with insulin resistant states and obesity causing inflammation that eventually causes type 2-diabetes. Among the biomarkers that are accompanying low grade inflammation include IL-1β, IL-6 and TNF-α. The current review point out the importance of measuring the inflammatory biomarkers especially focusing on the conductance and measurement for IL-6 as a screening laboratory test and its diagnostic value in clinical practice.


2006 ◽  
Vol 92 (2) ◽  
pp. 386-395 ◽  
Author(s):  
Arya M. Sharma ◽  
Bart Staels

Abstract Context: Adipose tissue is a metabolically dynamic organ, serving as a buffer to control fatty acid flux and a regulator of endocrine function. In obese subjects, and those with type 2 diabetes or the metabolic syndrome, adipose tissue function is altered (i.e. adipocytes display morphological differences alongside aberrant endocrine and metabolic function and low-grade inflammation). Evidence Acquisition: Articles on the role of peroxisome proliferator-activated receptor γ (PPARγ) in adipose tissue of healthy individuals and those with obesity, metabolic syndrome, or type 2 diabetes were sourced using MEDLINE (1990–2006). Evidence Synthesis: Articles were assessed to provide a comprehensive overview of how PPARγ-activating ligands improve adipose tissue function, and how this links to improvements in insulin resistance and the progression to type 2 diabetes and atherosclerosis. Conclusions: PPARγ is highly expressed in adipose tissue, where its activation with thiazolidinediones alters fat topography and adipocyte phenotype and up-regulates genes involved in fatty acid metabolism and triglyceride storage. Furthermore, PPARγ activation is associated with potentially beneficial effects on the expression and secretion of a range of factors, including adiponectin, resistin, IL-6, TNFα, plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, and angiotensinogen, as well as a reduction in plasma nonesterified fatty acid supply. The effects of PPARγ also extend to macrophages, where they suppress production of inflammatory mediators. As such, PPARγ activation appears to have a beneficial effect on the relationship between the macrophage and adipocyte that is distorted in obesity. Thus, PPARγ-activating ligands improve adipose tissue function and may have a role in preventing progression of insulin resistance to diabetes and endothelial dysfunction to atherosclerosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Junling Yang ◽  
Ken-Ichiro Fukuchi

Obesity significantly increases the risk of developing type 2 diabetes mellitus and other metabolic diseases. Obesity is associated with chronic low-grade inflammation in white adipose tissues, which is thought to play an essential role in developing insulin resistance. Many lines of evidence indicate that toll-like receptors (TLRs) and their downstream signaling pathways are involved in development of chronic low-grade inflammation and insulin resistance, which are associated with obesity. Mice lacking molecules positively involved in the TLR signaling pathways are generally protected from high-fat diet-induced inflammation and insulin resistance. In this study, we have determined the effects of genetic deficiency of toll/interleukin-1 receptor-domain-containing adaptor-inducing interferon-β (TRIF) on food intake, bodyweight, glucose metabolism, adipose tissue macrophage polarization, and insulin signaling in normal chow diet-fed mice to investigate the role of the TRIF-dependent TLR signaling in adipose tissue metabolism and inflammation. TRIF deficiency (TRIF−/−) increased food intake and bodyweight. The significant increase in bodyweight in TRIF−/− mice was discernible as early as 24 weeks of age and sustained thereafter. TRIF−/− mice showed impaired glucose tolerance in glucose tolerance tests, but their insulin tolerance tests were similar to those in TRIF+/+ mice. Although no difference was found in the epididymal adipose mass between the two groups, the percentage of CD206+ M2 macrophages in epididymal adipose tissue decreased in TRIF−/− mice compared with those in TRIF+/+ mice. Furthermore, activation of epididymal adipose AKT in response to insulin stimulation was remarkably diminished in TRIF−/− mice compared with TRIF+/+ mice. Our results indicate that the TRIF-dependent TLR signaling contributes to maintaining insulin/AKT signaling and M2 macrophages in epididymal adipose tissue under a normal chow diet and provide new evidence that TLR4-targeted therapies for type 2 diabetes require caution.


Author(s):  
Laleh Pezhman ◽  
Abd Tahrani ◽  
Myriam Chimen

Type 2 Diabetes Mellitus (T2DM) is a chronic inflammatory disorder that is characterized by chronic hyperglycemia and impaired insulin signaling which in addition to be caused by common metabolic dysregulations, have also been associated to changes in various immune cell number, function and activation phenotype. Obesity plays a central role in the development of T2DM. The inflammation originating from obese adipose tissue develops systemically and contributes to insulin resistance, beta cell dysfunction and hyperglycemia. Hyperglycemia can also contribute to chronic, low-grade inflammation resulting in compromised immune function. In this review, we explore how the trafficking of innate and adaptive immune cells under inflammatory condition is dysregulated in T2DM. We particularly highlight the obesity-related accumulation of leukocytes in the adipose tissue leading to insulin resistance and beta-cell dysfunction and resulting in hyperglycemia and consequent changes of adhesion and migratory behavior of leukocytes in different vascular beds. Thus, here we discuss how potential therapeutic targeting of leukocyte trafficking could be an efficient way to control inflammation as well as diabetes and its vascular complications.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Alex S. Yamashita ◽  
Thiago Belchior ◽  
Fábio S. Lira ◽  
Nicolette C. Bishop ◽  
Barbara Wessner ◽  
...  

Visceral obesity is frequently associated with the development of type 2 diabetes (T2D), a highly prevalent chronic disease that features insulin resistance and pancreatic β-cell dysfunction as important hallmarks. Recent evidence indicates that the chronic, low-grade inflammation commonly associated with visceral obesity plays a major role connecting the excessive visceral fat deposition with the development of insulin resistance and pancreatic β-cell dysfunction. Herein, we review the mechanisms by which nutrients modulate obesity-associated inflammation.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Pedram Shafiei-Jahani ◽  
Benjamin P. Hurrell ◽  
Lauriane Galle-Treger ◽  
Doumet Georges Helou ◽  
Emily Howard ◽  
...  

Abstract Disturbances in glucose homeostasis and low-grade chronic inflammation culminate into metabolic syndrome that increase the risk for the development of type 2 diabetes mellitus (T2DM). The recently discovered group 2 innate lymphoid cells (ILC2s) are capable of secreting copious amounts of type 2 cytokines to modulate metabolic homeostasis in adipose tissue. In this study, we have established that expression of Death Receptor 3 (DR3), a member of the TNF superfamily, on visceral adipose tissue (VAT)-derived murine and peripheral blood human ILC2s is inducible by IL-33. We demonstrate that DR3 engages the canonical and/or non-canonical NF-κB pathways, and thus stimulates naïve and co-stimulates IL-33-activated ILC2s. Importantly, DR3 engagement on ILC2s significantly ameliorates glucose tolerance, protects against insulin-resistance onset and remarkably reverses already established insulin-resistance. Taken together, these results convey the potent role of DR3 as an ILC2 regulator and introduce DR3 agonistic treatment as a novel therapeutic avenue for treating T2DM.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Shuang Chen ◽  
Hongmei Jiang ◽  
Xiaosong Wu ◽  
Jun Fang

In previous studies, abdominal obesity has been related to total low-grade inflammation and in some cases has resulted in insulin resistance and other metabolism related disorders such as diabetes. Quercetin is a polyphenol, which is a derivative of plants, and has been shownin vitroas well as in a few animal models to have several potential anti-inflammatory as well as anticarcinogenic applications. The substance has also been shown to aid in the attenuation of lipid peroxidation, platelet aggregation, and capillary permeability. However, further research is called for to gain a better understanding of how quercetin is able to provide these beneficial effects. This manuscript reviewed quercetin’s anti-inflammatory properties in relation to obesity and type 2 diabetes.


Author(s):  
L. A. Kharitonova ◽  
O. V. Papisheva ◽  
T. A. Mayatskaya ◽  
G. A. Kotaysh

The gut microbiota has attracted increasing attention during the last several years as a key player in the pathophysiology of chronic disease. Microbiome is considered to be the link between metabolic disorders, obesity, insulin resistance, dyslipidemia, diabetes, hypertension and cardiovascular diseases. Recent findings have related the intestinal microbiota to a plethora of pathological conditions, including type 2 diabetes, obesity, cholelithiasis and nonalcoholic steatohepatitis. This review presents potential mechanisms for the development of these diseases in response to changes in the gut microbiota. They involve increased gut permeability, low-grade inflammation and autoantibodies. Many studies contradict each other, which confirms the need for further scientific research in this area.


Author(s):  
Seul Ki Lee ◽  
Chan Yoon Park ◽  
Jimin Kim ◽  
Donguk Kim ◽  
Han Choe ◽  
...  

Abstract Context The up-regulation of TRIB3, a stress-inducible gene encoding a pseudokinase, has been implicated in the development of insulin resistance in the skeletal muscle and liver of patients with obesity and type 2 diabetes. However, there is little information regarding TRIB3 expression in human adipose tissue. Objectives To investigate whether TRIB3 expression is dysregulated in human adipose tissue in the context of obesity and type 2 diabetes and whether TRIB3 expression in adipose tissues is associated with insulin resistance. Methods We measured metabolic parameters and TRIB3 expression in the abdominal subcutaneous and visceral adipose tissue in obese (with or without type 2 diabetes) and normal-weight women. Regulation of TRIB3 expression was studied in human adipocytes. Results TRIB3 expression in both fat depots was higher in patients with obesity and/or type 2 diabetes; in addition, the expression level was significantly associated with insulin resistance. Incubating adipocytes under the conditions mimicking the microenvironment of obese adipose tissue, including increased endoplasmic reticulum (ER) stress, induced TRIB3 expression. In human adipocytes, the overexpression of TRIB3 impaired the insulin-stimulated AKT phosphorylation and caused dysregulation of the transcription of genes encoding the bioactive molecules released from adipocytes, such as proinflammatory cytokines, adiponectin, and leptin. Pioglitazone, an insulin-sensitizing agent, reduced both these effects of TRIB3 and the ER stressor-induced expression of TRB3. Conclusions Our data indicate that TRIB3 expression in adipose tissue is enhanced in patients with obesity and suggest that the increased TRIB3 dysregulates adipocyte function, which may contribute to the development of insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document