scholarly journals The Effect of a Multi-Ingredient Pre-Workout Supplement on Time to Fatigue in NCAA Division I Cross-Country Athletes

Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1823
Author(s):  
Haley Fye ◽  
Caroline Pass ◽  
Kate Dickman ◽  
Eric Bredahl ◽  
Joan Eckerson ◽  
...  

This investigation aimed to determine the effect of a multi-ingredient pre-workout supplement (MIPS) on heart rate (HR), perceived exertion (RPE), lactate concentration, and time to fatigue (TTF) during a running task to volitional exhaustion. Eleven NCAA Division I cross-country runners (20 ± 2 year; height: 171 ± 14 cm; weight: 63.5 ± 9.1 kg) participated in this randomized, double-blind, placebo-controlled cross-over study. Bayesian statistical methods were utilized, and parameter estimates were interpreted as statistically significant if the 95% highest-density intervals (HDIs) did not include zero. TTF was increased in the MIPS condition with a posterior Meandiff = 154 ± 4.2 s (95% HDI: −167, 465) and a 0.84 posterior probability that the supplement would increase TTF relative to PL. Blood lactate concentration immediately post-exercise was also higher in the MIPS condition compared to PL with an estimated posterior Meandiff = 3.99 ± 2.1 mmol (95% HDI: −0.16, 7.68). There were no differences in HR or RPE between trials. These findings suggest that a MIPS ingested prior to sustained running at lactate threshold has an 84% chance of increasing TTF in highly trained runners and may allow athletes to handle a higher level of circulating lactate before reaching exhaustion.

Author(s):  
Erik P. Andersson ◽  
Irina Hämberg ◽  
Paulo Cesar Do Nascimento Salvador ◽  
Kerry McGawley

Abstract Purpose This study aimed to compare physiological factors and cycle characteristics during cross-country (XC) roller-skiing at matched inclines and speeds using the double-poling (DP) and diagonal-stride (DS) sub-techniques in junior female and male XC skiers. Methods Twenty-three well-trained junior XC skiers (11 women, 12 men; age 18.2 ± 1.2 yr.) completed two treadmill roller-skiing tests in a randomized order using either DP or DS. The exercise protocols were identical and included a 5 min warm-up, 4 × 5 min submaximal stages, and an incremental test to exhaustion, all performed at a 5° incline. Results No significant three-way interactions were observed between sex, submaximal exercise intensity, and sub-technique. For the pooled sample, higher values were observed for DP versus DS during submaximal exercise for the mean oxygen uptake kinetics response time (33%), energy cost (18%), heart rate (HR) (9%), blood lactate concentration (5.1 versus 2.1 mmol·L−1), rating of perceived exertion (12%), and cycle rate (25%), while cycle length was lower (19%) (all P < 0.001). During the time-to-exhaustion (TTE) test, peak oxygen uptake ($$\dot{V}$$ V ˙ O2peak), peak HR, and peak oxygen pulse were 8%, 2%, and 6% lower, respectively, for DP than DS, with a 29% shorter TTE during DP (pooled data, all P < 0.001). Conclusion In well-trained junior XC skiers, DP was found to exert a greater physiological load than DS during uphill XC roller-skiing at submaximal intensities. During the TTE test, both female and male athletes were able to ski for longer and reached markedly higher $$\dot{V}$$ V ˙ O2peak values when using DS compared to DP.


2020 ◽  
Vol 34 (3) ◽  
pp. 471-481
Author(s):  
Gabriel Barreto ◽  
Rafael Pires da Silva ◽  
Guilherme Yamaguchi ◽  
Luana Farias de Oliveira ◽  
Vitor de Salles Painelli ◽  
...  

Caffeine has been shown to increase anaerobic energy contribution during short-duration cycling time-trials (TT) though no information exists on whether caffeine alters energy contribution during more prolonged, aerobic type TTs. The aim of this study was to determine the effects of caffeine supplementation on longer and predominantly aerobic exercise. Fifteen recreationally-trained male cyclists (age 38±8 y, height 1.76±0.07 m, body mass 72.9±7.7 kg) performed a ~30 min cycling TT following either 6 mg·kg-1BM caffeine (CAF) or placebo (PLA) supplementation, and one control (CON) session without supplementation, in a double- -blind, randomised, counterbalance and cross-over design. Mean power output (MPO) was recorded as the outcome measure. Respiratory values were measured throughout exercise for the determination of energy system contribution. Data were analysed using mixed-models. CAF improved mean MPO compared to CON (P=0.01), and a trend towards an improvement compared to PLA (P=0.07); there was no difference in MPO at any timepoint throughout the exercise between conditions. There was a main effect of Condition (P=0.04) and Time (P<0.0001) on blood lactate concentration, which tended to be higher in CAF vs. both PLA and CON (Condition effect, both P=0.07). Ratings of perceived exertion increased over time (P<0.0001), with no effect of Condition or interaction (both P>0.05). Glycolytic energy contribution was increased in CAF compared to CON and PLA (both P<0.05), but not aerobic or ATP-CP (both P>0.05). CAF improved aerobic TT performance compared to CON, which could be explained by increased glycolytic energy contribution.


2020 ◽  
Vol 6 (1) ◽  
pp. e000815
Author(s):  
Mette Engan ◽  
Ida Jansrud Hammer ◽  
Trine Stensrud ◽  
Hilde Gundersen ◽  
Elisabeth Edvardsen ◽  
...  

ObjectiveTo evaluate changes in pulmonary function and feasibility of portable continuous laryngoscopy during maximal uphill running.MethodsHealthy volunteers participated in an uphill race. Forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) were obtained before and 5 and 10 min after finishing the race. Capillary blood lactate concentration ([BLa-]) and Borg score for perceived exertion were registered immediately after the race. One participant wore a portable video-laryngoscope during the race, and the video was assessed for technical performance.ResultsTwenty adult subjects participated with a mean (SD) age of 40.2 (9.7) years. Mean (SD) race duration and post-exercise [BLa-] was 13.9 (2.3) min and 10.7 (2.1) mmol/L, respectively, and the median (range) Borg score for perceived exertion was 9 (5–10). Mean percentage change (95% CI) 5 and 10 min post-exercise in FEV1 were 6.9 (3.7 to 10.2) % and 5.9 (2.7 to 9.0) %, respectively, and in FVC 5.2 (2.3 to 8.1) % and 4.7 (1.6 to 7.9) %, respectively. The recorded video of the larynx was of good quality.ConclusionsMaximal aerobic field exercise induced bronchodilatation in the majority of the healthy non-asthmatic participants. It is feasible to perform continuous video-laryngoscopy during heavy uphill exercise.


2012 ◽  
Vol 302 (8) ◽  
pp. E972-E978 ◽  
Author(s):  
Luigi Di Luigi ◽  
Paolo Sgrò ◽  
Carlo Baldari ◽  
Maria Chiara Gallotta ◽  
Gian Pietro Emerenziani ◽  
...  

Phosphodiesterase type 5 inhibitors may influence human physiology, health, and performance by also modulating endocrine pathways. We evaluated the effects of a 2-day tadalafil administration on adenohypophyseal and adrenal hormone adaptation to exercise in humans. Fourteen healthy males were included in a double-blind crossover trial. Each volunteer randomly received two tablets of placebo or tadalafil (20 mg/day with a 36-h interval) before a maximal exercise was performed. After a 2-wk washout, the volunteers were crossed over. Blood samples were collected at −30 and −15 min and immediately before exercise, immediately after, and during recovery (+15, +30, +60, and +90 min) for adrenocorticotropin (ACTH), β-endorphin, growth hormone (GH), prolactin, cortisol (C), corticosterone, dehydroepiandrosterone-sulfate (DHEAS), and cortisol binding globulin (CBG) assays. C-to-CBG (free cortisol index, FCI) and DHEAS-to-C ratios were calculated. Exercise intensity, perceived exertion rate, O2 consumption, and CO2 and blood lactate concentration were evaluated. ACTH, GH, C, corticosterone, and CBG absolute concentrations and/or areas under the curve (AUC) increased after exercise after both placebo and tadalafil. Exercise increased DHEAS only after placebo. Compared with placebo, tadalafil administration reduced the ACTH, C, corticosterone, and FCI responses to exercise and was associated with higher β-endorphin AUC and DHEAS-to-C ratio during recovery, without influencing cardiorespiratory and performance parameters. Tadalafil reduced the activation of the hypothalamus-pituitary-adrenal axis during exercise by probably influencing the brain's nitric oxide- and cGMP-mediated pathways. Further studies are necessary to confirm our results and to identify the involved mechanisms, possible health risks, and potential clinical uses.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 596 ◽  
Author(s):  
Alistair Mallard ◽  
David Briskey ◽  
Andrew Richards ◽  
Dean Mills ◽  
Amanda Rao

The aim of this study was to evaluate the effect of palmitoylethanolamide (PEA), a cannabimimetic compound and lipid messenger, on recovery from muscle damaging exercise. Twenty-eight healthy young male participants attended the laboratory four times on subsequent days. In the first visit, baseline characteristics were recorded before participants were randomized to consume either liquid PEA (167.5 mg Levagen+ with 832.5 mg maltodextrin) or a matched placebo (1 g maltodextrin) drink. Leg press exercise consisted of four sets at 80% of one repetition maximum followed by a performance set. Muscle soreness, thigh circumference, blood lactate concentration, biomarkers of muscle damage and inflammation, and transcription factor pathways were measured pre- and immediately post-exercise and again at 1, 2, 3, 24, 48, and 72 h post-exercise. The leg press exercise increased (p < 0.05) blood lactate concentration and induced muscle damage as evidenced by increased muscle soreness, thigh circumference, biomarkers of muscle damage, and concentrations of tumor necrosis factor-α. PEA reduced (p < 0.05) myoglobin and blood lactate concentrations and increased protein kinase B phosphorylation following exercise. Taken together, these results indicate PEA supplementation may aid in muscle recovery from repeat bouts of exercise performed within a short duration by reducing myoglobin and lactate concentration.


2007 ◽  
Vol 17 (2) ◽  
pp. 206-217 ◽  
Author(s):  
Guilherme Giannini Artioli ◽  
Bruno Gualano ◽  
Desiré Ferreira Coelho ◽  
Fabiana Braga Benatti ◽  
Alessandra Whyte Gailey ◽  
...  

The aim of the present study was to investigate whether pre exercise sodium-bicarbonate ingestion improves judo-related performance. The study used 2 different protocols to evaluate performance: 3 bouts of a specific judo test (n = 9) and 4 bouts of the Wingate test for upper limbs (n = 14). In both protocols athletes ingested 0.3 g/kg of sodium bicarbonate or placebo 2 h before the tests. Blood samples were collected to determine lactate level, and levels of perceived exertion were measured throughout the trials. The study used a double-blind, counterbalanced, crossover design. Ingestion of sodium bicarbonate improved performance in Bouts 2 and 3 of Protocol 1 (P < 0.05), mean power in Bouts 3 and 4 of Protocol 2 (P < 0.05), and peak power in Bout 4 of Protocol 2 (P < 0.05). Ingestion of bicarbonate increased lactate concentration in Protocol 1 (P < 0.05) but not in Protocol 2. Ratings of perceived exertion did not differ between treatments. In conclusion, sodium bicarbonate improves judo-related performance and increases blood lactate concentration but has no effect on perceived exertion.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2040 ◽  
Author(s):  
Domingo Jesús Ramos-Campo ◽  
Andrés Pérez ◽  
Vicente Ávila-Gandía ◽  
Silvia Pérez-Piñero ◽  
Jacobo Ángel Rubio-Arias

Background: Caffeine ingestion improves athletic performance, but impairs sleep quality. We aimed to analyze the effect of caffeine intake on 800-m running performance, sleep quality (SQ), and nocturnal cardiac autonomic activity (CAA) in trained runners. Methods: Fifteen male middle-distance runners participated in the study (aged 23.7 ± 8.2 years). In a randomized and comparative crossover study design, the athletes ingested a placebo (PL) or caffeine supplement (CAF; 6 mg∙kg−1) one hour before an 800-m running time-trial test in the evening. During the night, CAA and SQ were assessed using actigraphy and a sleep questionnaire. A second 800-m running test was performed 24 h after the first. Time, heart rate, rating of perceived exertion, and blood lactate concentration were analyzed for each running test. Results: No significant differences in CAA and performance variables were found between the two conditions. However, CAF impaired sleep efficiency (p = 0.003), actual wake time (p = 0.001), and the number of awakenings (p = 0.005), as measured by actigraphy. Also, CAF impaired the questionnaire variables of SQ (p = 0.005), calm sleep (p = 0.005), ease of falling asleep (p = 0.003), and feeling refreshed after waking (p = 0.006). Conclusion: The supplementation with caffeine (6 mg∙kg−1) did not improve the 800-m running performance, but did impair the SQ of trained runners.


2015 ◽  
Vol 10 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Hassane Zouhal ◽  
Abderraouf Ben Abderrahman ◽  
Jacques Prioux ◽  
Beat Knechtle ◽  
Lotfi Bouguerra ◽  
...  

Purpose:To determine the effect of drafting on running time, physiological response, and rating of perceived exertion (RPE) during 3000-m track running.Methods:Ten elite middle- and long-distance runners performed 3 track-running sessions. The 1st session determined maximal oxygen uptake and maximal aerobic speed using a lightweight ambulatory respiratory gasexchange system (K4B2). The 2nd and the 3rd tests consisted of nondrafting 3000-m running (3000-mND) and 3000-m running with drafting for the 1st 2000 m (3000-mD) performed on the track in a randomized counterbalanced order.Results:Performance during the 3000-mND (553.59 ± 22.15 s) was significantly slower (P < .05) than during the 3000-mD (544.74 ± 18.72 s). Cardiorespiratory responses were not significantly different between the trials. However, blood lactate concentration was significantly higher (P < .05) after the 3000-mND (16.4 ± 2.3 mmol/L) than after the 3000-mD (13.2 ± 5.6 mmol/L). Athletes perceived the 3000-mND as more strenuous than the 3000-mD (P < .05) (RPE = 16.1 ± 0.8 vs 13.1 ± 1.3). Results demonstrate that drafting has a significant effect on performance in highly trained runners.Conclusion:This effect could not be explained by a reduced energy expenditure or cardiorespiratory effort as a result of drafting. This raises the possibility that drafting may aid running performance by both physiological and nonphysiological (ie, psychological) effects.


Author(s):  
Abdullah B. Alansare ◽  
Josh Hayman ◽  
Jung-Min Lee ◽  
Myong-Won Seo ◽  
Deoksu Yoo ◽  
...  

This study examined the effects of a non-caffeinated energy drink (ED) that contained calamansi juice, glucose, and taurine on 3-km running performance and recovery. Eleven NCAA Division I middle-distance runners (20.8 ± 1.5 years old) were randomly assigned to consume either the ED or a placebo drink 60 min before 3-km running on a 400-m official track. Performance time and speed were recorded every 500-m interval. Recovery blood lactate concentration (BLC), systolic (SBP), diastolic blood pressure (DBP), and heart rate (HR) were measured at baseline, 60-min after ingesting the drinks, and post-running measurements were performed at 1-min, 5-min, and 10-min. Repeated analysis of variance and paired t-test were applied to examine the effects of time, trials, and their interaction on performance and recovery. Statistical significance was set a priori at p < 0.05. No significant difference was observed in performance time and speed between trials (p < 0.05). No interaction effect was found on performance time, speed, recovery BLC, DBP, and HR (p < 0.05). However, an interaction effect for trial by time was observed on SBP (p = 0.01). Recovery SBP continues to decrease from 5-min to 10-min in the ED trial (∆ = −13.9·mmHg) and slightly increased in the placebo trial (∆ = 1.1·mmHg). This study suggests that acute consumption of a calamansi-containing ED can positively impact the SBP recovery but not running performance. Further studies are needed to examine the acute and chronic effects of this ED on exercise performance and recovery among different populations.


2018 ◽  
Vol 43 (6) ◽  
pp. 571-579 ◽  
Author(s):  
Silva Suvi ◽  
Martin Mooses ◽  
Saima Timpmann ◽  
Luule Medijainen ◽  
Daria Narõškina ◽  
...  

The purpose of this study was to assess the impact of sodium citrate (CIT) ingestion (600 mg·kg−1) during recovery from dehydrating cycling exercise (DE) on subsequent 40-km cycling performance in a warm environment (32 °C). Twenty male nonheat-acclimated endurance athletes exercised in the heat until 4% body mass (BM) loss occurred. After 16 h recovery with consumption of water ad libitum and prescribed diet (evening meal 20 kcal·kg−1, breakfast 12 kcal·kg−1) supplemented in a double-blind, randomized, crossover manner with CIT or placebo (PLC), they performed 40-km time-trial (TT) on a cycle ergometer in a warm environment. During recovery greater increases in BM and plasma volume (PV) concomitant with greater water intake and retention occurred in the CIT trial compared with the PLC trial (p < 0.0001). During TT there was greater water intake and smaller BM loss in the CIT trial than in the PLC trial (p < 0.05) with no between-trial differences (p > 0.05) in sweat loss, PV decrement, ratings of perceived exertion, or TT time (CIT 68.10 ± 3.28 min, PLC 68.11 ± 2.87 min). At the end of TT blood lactate concentration was higher (7.58 ± 2.44 mmol·L−1 vs 5.58 ± 1.32 mmol·L−1; p = 0.0002) and rectal temperature lower (39.54 ± 0.50 °C vs 39.65 ± 0.52 °C; p = 0.033) in the CIT trial than in the PLC trial. Compared with pre-DE time point, PV had decreased to a lower level in the PLC trial than in the CIT trial (p = 0.0001). In conclusion, CIT enhances rehydration after exercise-induced dehydration but has no impact on subsequent 40-km cycling TT performance in a warm uncompensable environment.


Sign in / Sign up

Export Citation Format

Share Document