scholarly journals Synergistic Neuroprotective Effects of a Natural Product Mixture against AD Hallmarks and Cognitive Decline in Caenorhabditis elegans and an SAMP8 Mice Model

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2411
Author(s):  
Christian Griñán-Ferré ◽  
Aina Bellver-Sanchis ◽  
Mónica Olivares-Martín ◽  
Oscar Bañuelos-Hortigüela ◽  
Mercè Pallàs

The study of different natural products can provide a wealth of bioactive compounds, and more interestingly, their combination can exert a new strategy for several neurodegenerative diseases with major public health importance, such as Alzheimer’s disease (AD). Here, we investigated the synergistic neuroprotective effects of a mixed extract composed of docosahexaenoic acid, Ginkgo biloba, D-pinitol, and ursolic acid in several transgenic Caenorhabditis elegans (C. elegans) and a senescence-accelerated prone mice 8 (SAMP8) model. First, we found a significantly higher survival percentage in the C. elegans group treated with the natural product mixture compared to the single extract-treated groups. Likewise, we found a significantly increased lifespan in group of C. elegans treated with the natural product mixture compared to the other groups, suggesting synergistic effects. Remarkably, we determined a significant reduction in Aβ plaque accumulation in the group of C. elegans treated with the natural product mixture compared to the other groups, confirming synergy. Finally, we demonstrated better cognitive performance in the group treated with the natural product mixture in both AD models (neuronal Aβ C. elegans strain CL2355 and the SAMP8 mice model), confirming the molecular results and unraveling the synergist effects of this combination. Therefore, our results proved the potential of this new natural product mixture for AD therapeutic strategies.

Genetics ◽  
1988 ◽  
Vol 120 (4) ◽  
pp. 977-986
Author(s):  
K J Kemphues ◽  
M Kusch ◽  
N Wolf

Abstract We have analyzed a set of linkage group (LG) II maternal-effect lethal mutations in Caenorhabditis elegans isolated by a new screening procedure. Screens of 12,455 F1 progeny from mutagenized adults resulted in the recovery of 54 maternal-effect lethal mutations identifying 29 genes. Of the 54 mutations, 39 are strict maternal-effect mutations defining 17 genes. These 17 genes fall into two classes distinguished by frequency of mutation to strict maternal-effect lethality. The smaller class, comprised of four genes, mutated to strict maternal-effect lethality at a frequency close to 5 X 10(-4), a rate typical of essential genes in C. elegans. Two of these genes are expressed during oogenesis and required exclusively for embryogenesis (pure maternal genes), one appears to be required specifically for meiosis, and the fourth has a more complex pattern of expression. The other 13 genes were represented by only one or two strict maternal alleles each. Two of these are identical genes previously identified by nonmaternal embryonic lethal mutations. We interpret our results to mean that although many C. elegans genes can mutate to strict maternal-effect lethality, most genes mutate to that phenotype rarely. Pure maternal genes, however, are among a smaller class of genes that mutate to maternal-effect lethality at typical rates. If our interpretation is correct, we are near saturation for pure maternal genes in the region of LG II balanced by mnC1. We conclude that the number of pure maternal genes in C. elegans is small, being probably not much higher than 12.


2021 ◽  
pp. 1-17
Author(s):  
Mani Iyer Prasanth ◽  
James Michael Brimson ◽  
Dicson Sheeja Malar ◽  
Anchalee Prasansuklab ◽  
Tewin Tencomnao

BACKGROUND: Streblus asper Lour., has been reported to have anti-aging and neuroprotective efficacies in vitro. OBJECTIVE: To analyze the anti-aging, anti-photoaging and neuroprotective efficacies of S. asper in Caenorhabditis elegans. METHODS: C. elegans (wild type and gene specific mutants) were treated with S. asper extract and analyzed for lifespan and other health benefits through physiological assays, fluorescence microscopy, qPCR and Western blot. RESULTS: The plant extract was found to increase the lifespan, reduce the accumulation of lipofuscin and modulate the expression of candidate genes. It could extend the lifespan of both daf-16 and daf-2 mutants whereas the pmk-1 mutant showed no effect. The activation of skn-1 was observed in skn-1::GFP transgenic strain and in qPCR expression. Further, the extract can extend the lifespan of UV-A exposed nematodes along with reducing ROS levels. Additionally, the extract also extends lifespan and reduces paralysis in Aβ transgenic strain, apart from reducing Aβ expression. CONCLUSIONS: S. asper was able to extend the lifespan and healthspan of C. elegans which was independent of DAF-16 pathway but dependent on SKN-1 and MAPK which could play a vital role in eliciting the anti-aging, anti-photoaging and neuroprotective effects, as the extract could impart oxidative stress resistance and neuroprotection.


Author(s):  
Mengjiao Hao ◽  
Zhikang Zhang ◽  
Yijun Guo ◽  
Huihao Zhou ◽  
Qiong Gu ◽  
...  

Abstract AMP-activated protein kinase (AMPK) is involved in life span maintenance, stress responses, and germ cell cycle arrest upon dauer entry. AMPK is currently considered a promising target for preventing age-related diseases. Rubidium is one of the trace elements in human body. As early as the 1970s, RbCl has been was reported to have neuroprotective effects. In this work, we report the anti-aging effect of RbCl in Caenorhabditis elegans. Specifically, we reveal that (1) RbCl does increase the lifespan and enhance stress resistance in C. elegans without disturbing their fecundity. (2) RbCl induces superoxide dismutase (SOD) expression, which is essential for its anti-aging and anti-stress effect. (3) AAK-2 and DAF-16 are essential to the anti-aging efficacy of RbCl, and RbCl can promote DAF-16 translocating into the nucleus, suggesting that RbCl delays aging through regulating AMPK/FOXO pathway. RbCl can be a promising agent against aging related diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Min Lu ◽  
Lin Tan ◽  
Xiao-Gang Zhou ◽  
Zhong-Lin Yang ◽  
Qing Zhu ◽  
...  

Secoisolariciresinol diglucoside (SDG) is a phytoestrogen and rich in food flaxseed, sunflower seeds, and sesame seeds. Among the beneficial pharmacological activities of SDG on health, many are age related, such as anticancer, antidiabetes, antioxidant, and neuroprotective effects. Thus, we investigated if SDG had an effect on antiaging in Caenorhabditis elegans (C. elegans). Our results showed that SDG could extend the lifespan of C. elegans by up to 22.0%, delay age-related decline of body movement, reduce the lethality of heat and oxidative stress, alleviate dopamine neurodegeneration induced by 6-hydroxydopamine (6-OHDA), and decrease the toxicity of Aβ protein in C. elegans. SDG could increase the expression of the downstream genes of DAF-16, DAF-12, NHR-80, and HSF-1 at mRNA level. SDG could not extend the lifespan of mutants from genes daf-16, hsf-1, nhr-80, daf-12, glp-1, eat-2, and aak-2. The above results suggested that SDG might enhance the stress resistance, delay the progression of aging-related diseases, and extend the lifespan of C. elegans via DAF-16 and HSF-1.


1990 ◽  
Vol 10 (5) ◽  
pp. 2081-2089 ◽  
Author(s):  
J M Kramer ◽  
R P French ◽  
E C Park ◽  
J J Johnson

The rol-6 gene is one of the more than 40 loci in Caenorhabditis elegans that primarily affect organismal morphology. Certain mutations in the rol-6 gene produce animals that have the right roller phenotype, i.e., they are twisted into a right-handed helix. The rol-6 gene interacts with another gene that affects morphology, sqt-1; a left roller allele of sqt-1 acts as a dominant suppressor of a right roller allele of rol-6. The sqt-1 gene has previously been shown to encode a collagen. We isolated and sequenced the rol-6 gene and found that it also encodes a collagen. The rol-6 gene was identified by physical mapping of overlapping chromosomal deficiencies that cover the gene and by identification of an allele-specific restriction site alteration. The amino acid sequence of the collagen encoded by rol-6 is more similar to that of the sqt-1 collagen than to any of the other ten C. elegans cuticle collagen sequences compared. The locations of cysteine residues flanking the Gly-X-Y repeat regions of rol-6 and sqt-1 are identical, but differ from those in the other collagens. The sequence similarities between rol-6 and sqt-1 indicate that they represent a new collagen subfamily in C. elegans. These findings suggest that these two collagens physically interact, possibly explaining the genetic interaction seen between the rol-6 and sqt-1 genes.


Genetics ◽  
1978 ◽  
Vol 88 (1) ◽  
pp. 49-65
Author(s):  
Robert K Herman

ABSTRACT Two dominant suppressors of crossing over have been identified following X-ray treatment of the small nematode C. elegans. They suppress crossing over in linkage group II (LGII) about 100-fold and 50-fold and are both tightly linked to LGII markers. One, called C1, segregates independently of all other linkage groups and is homozygous fertile. The other is a translocation involving LGII and X. The translocation also suppresses rrossing over along the right half of X and is homozygous lethal. CI has been used as a balancer of LGII recessive lethal and sterile mutations induced by EMS. The frequencies of occurrence of lethals and steriles were approximately equal. Fourteen mutations were assigned to complementation groups and mapped. They tended to map in the same region where LGII visibles are clustered.


2000 ◽  
Vol 113 (21) ◽  
pp. 3825-3837 ◽  
Author(s):  
T.Q. Nguyen ◽  
H. Sawa ◽  
H. Okano ◽  
J.G. White

Septins have been shown to play important roles in cytokinesis in diverse organisms ranging from yeast to mammals. In this study, we show that both the unc-59 and unc-61 loci encode Caenorhabditis elegans septins. Genomic database searches indicate that unc-59 and unc-61 are probably the only septin genes in the C. elegans genome. UNC-59 and UNC-61 localize to the leading edge of cleavage furrows and eventually reside at the midbody. Analysis of unc-59 and unc-61 mutants revealed that each septin requires the presence of the other for localization to the cytokinetic furrow. Surprisingly, unc-59 and unc-61 mutants generally have normal embryonic development; however, defects were observed in post-embryonic development affecting the morphogenesis of the vulva, male tail, gonad, and sensory neurons. These defects can be at least partially attributed to failures in post-embryonic cytokineses although our data also suggest other possible roles for septins. unc-59 and unc-61 double mutants show similar defects to each of the single mutants.


Development ◽  
1999 ◽  
Vol 126 (17) ◽  
pp. 3881-3890 ◽  
Author(s):  
S. Kim ◽  
X.C. Ren ◽  
E. Fox ◽  
W.G. Wadsworth

The netrin guidance cue, UNC-6, and the netrin receptors, UNC-5 and UNC-40, guide SDQR cell and axon migrations in C. elegans. In wild-type larvae, SDQR migrations are away from ventral UNC-6-expressing cells, suggesting that UNC-6 repels SDQR. In unc-6 null larvae, SDQR migrations are towards the ventral midline, indicating a response to other guidance cues that directs the migrations ventrally. Although ectopic UNC-6 expression dorsal to the SDQR cell body would be predicted to cause ventral SDQR migrations in unc-6 null larvae, in fact, more migrations are directed dorsally, suggesting that SDQR is not always repelled from the dorsal source of UNC-6. UNC-5 is required for dorsal SDQR migrations, but not for the ventral migrations in unc-6 null larvae. UNC-40 appears to moderate both the response to UNC-6 and to the other cues. Our results show that SDQR responds to multiple guidance cues and they suggest that, besides UNC-6, other factors influence whether an UNC-6 responsive cell migrates toward or away from an UNC-6 source in vivo. We propose that multiple signals elicited by the guidance cues are integrated and interpreted by SDQR and that the response to UNC-6 can change depending on the combination of cues encountered during migration. These responses determine the final dorsoventral position of the SDQR cell and axon.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Weizhang Jia ◽  
Qina Su ◽  
Qiong Cheng ◽  
Qiong Peng ◽  
Aimin Qiao ◽  
...  

Palmatine is a naturally occurring isoquinoline alkaloid that has been reported to display neuroprotective effects against amyloid-β- (Aβ-) induced neurotoxicity. However, the mechanisms underlying the neuroprotective activities of palmatine remain poorly characterized in vivo. We employed transgenic Caenorhabditis elegans models containing human Aβ1-42 to investigate the effects and possible mechanisms of palmatine-mediated neuroprotection. Treatment with palmatine significantly delayed the paralytic process and reduced the elevated reactive oxygen species levels in Aβ-transgenic C. elegans. In addition, it increased oxidative stress resistance without affecting the lifespan of wild-type C. elegans. Pathway analysis suggested that the differentially expressed genes were related mainly to aging, detoxification, and lipid metabolism. Real-time PCR indicated that resistance-related genes such as sod-3 and shsp were significantly upregulated, while the lipid metabolism-related gene fat-5 was downregulated. Further studies demonstrated that the inhibitory effects of palmatine on Aβ toxicity were attributable to the free radical-scavenging capacity and that the upregulated expression of resistance-related genes, especially shsp, whose expression was regulated by HSF-1, played crucial roles in protecting cells from Aβ-induced toxicity. The research showed that there were significantly fewer Aβ deposits in transgenic CL2006 nematodes treated with palmatine than in control nematodes. In addition, our study found that Aβ-induced toxicity was accompanied by dysregulation of lipid metabolism, leading to excessive fat accumulation in Aβ-transgenic CL4176 nematodes. The alleviation of lipid disorder by palmatine should be attributed not only to the reduction in fat synthesis but also to the inhibition of Aβ aggregation and toxicity, which jointly maintained metabolic homeostasis. This study provides new insights into the in vivo neuroprotective effects of palmatine against Aβ aggregation and toxicity and provides valuable targets for the prevention and treatment of AD.


2020 ◽  
Author(s):  
Bruno Nkambeu ◽  
Jennifer Ben Salem ◽  
Francis Beaudry

AbstractEugenol, a known vanilloid, was frequently used in dentistry as a local analgesic in addition, antibacterial and neuroprotective effects were also reported. Eugenol, capsaicin and many vanilloids are interacting with the transient receptor potential vanilloid 1 (TRPV1) in mammals and are activated by noxious heat. The pharmacological manipulation of the TRPV1 has been shown to have therapeutic value. Caenorhabditis elegans (C. elegans) express TRPV orthologs (e.g. OCR-2, OSM-9) and it is a commonly used animal model system to study nociception as it displays a well-defined and reproducible nocifensive behavior. After exposure to vanilloid solutions, C. elegans wild type (N2) and mutants were placed on petri dishes divided in quadrants for heat stimulation. Thermal avoidance index was used to phenotype each tested C. elegans experimental groups. The results showed that eugenol, vanillin and zingerone can hamper nocifensive response of C. elegans to noxious heat (32°C – 35°C) following a sustained exposition. Also, the effect was reversed 6h post exposition. Furthermore, eugenol and vanillin did not target specifically the OCR-2 or OSM-9 but zingerone did specifically target the OCR-2 similarly to capsaicin. Further structural and physicochemical analyses were performed. Key parameters for quantitative structure-property relationships (QSPR), quantitative structure-activity relationships (QSAR) and frontier orbital analyses suggest similarities and dissimilarities amongst the tested vanilloids and capsaicin in accordance with the relative anti-nociceptive effects observed.


Sign in / Sign up

Export Citation Format

Share Document