scholarly journals Roseburia hominis Increases Intestinal Melatonin Level by Activating p-CREB-AANAT Pathway

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 117
Author(s):  
Lijin Song ◽  
Meibo He ◽  
Qinghua Sun ◽  
Yujing Wang ◽  
Jindong Zhang ◽  
...  

Intestinal melatonin exerts diverse biological effects on the body. Our previous research showed that the abundance of the butyrate-producing bacteria, Roseburia, is positively related to the expression of colonic mucosal melatonin. However, the detailed relationship is unclear. Therefore, we aimed to explore whether Roseburia regulates intestinal melatonin and its underlying mechanisms. Male Sprague–Dawley germfree rats were orally administered with or without Roseburia hominis. R. hominis treatment significantly increased the intestinal melatonin level. The concentrations of propionate and butyrate in the intestinal contents were significantly elevated after gavage of R. hominis. Propionate or butyrate treatment increased melatonin, 5-hydroxytryptamine (5-HT), arylalkylamine N-acetyltransferase (AANAT), and phosphorylated cAMP-response element-binding protein (p-CREB) levels. When pretreated with telotristat ethyl, the inhibitor of tryptophan hydroxylase (TPH), or siRNA of Aanat, or 666-15, i.e., an inhibitor of CREB, propionate, or butyrate, could not promote melatonin production in the pheochromocytoma cell line BON-1. Metabolomics analysis showed that propionate and butyrate stimulation regulated levels of some metabolites and some metabolic pathways in BON-1 cell supernatants. In conclusion, propionate and butyrate, i.e., metabolites of R. hominis, can promote intestinal melatonin synthesis by increasing 5-HT levels and promoting p-CREB-mediated Aanat transcription, thereby offering a potential target for ameliorating intestinal diseases.

2006 ◽  
Vol 17 (2) ◽  
pp. 566-575 ◽  
Author(s):  
Sita Aggarwal ◽  
Seung-Wook Kim ◽  
Kyounga Cheon ◽  
Fazal H. Tabassam ◽  
Joo-Heon Yoon ◽  
...  

Vitamin A (retinol) is essential for normal regulation of cell growth and differentiation. We have shown that the retinol metabolite retinoic acid (RA) induces mucous cell differentiation of normal human tracheobronchial epithelial (NHTBE) cells. However, early biological effects of RA in the differentiation of bronchial epithelia are largely unknown. Here, we showed that RA rapidly activated cAMP response element-binding protein (CREB). However, RA did not use the conventional retinoic acid receptor (RAR)/retinoid X receptor (RXR) to activate CREB. RA activated CREB in NHTBE and H1734 cells in which RARs/RXR were silenced with small interfering RNA (siRNA) targeting RAR/RXR expression or deactivated by antagonist. Inhibition of protein kinase C (PKC) or extracellular regulated kinase (ERK1/2) blocked the RA-mediated activation of CREB. In addition, depletion of p90 ribosomal S6 kinase (RSK) via siRSK1/2 completely abolished the activation, suggesting that PKC, ERK, and RSK are required for the activation. Altogether, this study provides the first evidence that RA rapidly activates CREB transcription factor via PKC, ERK, and RSK in a retinoid receptor-independent manner in normal bronchial epithelial cells. This noncanonical RA signaling pathway may play an important role in mediating early biological effects in the mucociliary differentiation of bronchial epithelia.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 425
Author(s):  
Ji-Eun Kim ◽  
Duk-Shin Lee ◽  
Hana Park ◽  
Tae-Hyun Kim ◽  
Tae-Cheon Kang

α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) has been reported as one of the targets for treatment of epilepsy. Although maladaptive regulation of surface expression of glutamate ionotropic receptor AMPA type subunit 1 (GRIA1) subunit is relevant to the responsiveness to AMPAR antagonists (perampanel and GYKI 52466) in LiCl-pilocarpine-induced chronic epilepsy rats, the underlying mechanisms of refractory seizures to AMPAR antagonists have yet been unclear. In the present study, we found that both AMPAR antagonists restored the up-regulations of GRIA1 surface expression and Src family-mediated glycogen synthase kinase 3β (GSK3β)-Ca2+/cAMP response element-binding protein (CREB) phosphorylations to control levels in responders (whose seizure activities were responsive to AMPAR) but not non-responders (whose seizure activities were uncontrolled by AMPAR antagonists). In addition, 3-chloroacetyl indole (3CAI, an AKT inhibitor) co-treatment attenuated spontaneous seizure activities in non-responders, accompanied by reductions in AKT/GSK3β/CREB phosphorylations and GRIA1 surface expression. Although AMPAR antagonists reduced GRIA2 tyrosine (Y) phosphorylations in responders, they did not affect GRIA2 surface expression and protein interacting with C kinase 1 (PICK1) protein level in both responders and non-responders. Therefore, our findings suggest that dysregulation of AKT/GSK3β/CREB-mediated GRIA1 surface expression may be responsible for refractory seizures in non-responders, and that this pathway may be a potential target to improve the responsiveness to AMPAR antagonists.


2019 ◽  
Vol 17 (3) ◽  
pp. 249-253
Author(s):  
Liu Chenglong ◽  
Liu Haihua ◽  
Zhang Fei ◽  
Zheng Jie ◽  
Wei Fang

Cancer-induced bone pain is a severe and complex pain caused by metastases to bone in cancer patients. The aim of this study was to investigate the analgesic effect of scutellarin on cancer-induced bone pain in rat models by intrathecal injection of Walker 256 carcinoma cells. Mechanical allodynia was determined by paw withdrawal threshold in response to mechanical stimulus, and thermal hyperalgesia was indicated by paw withdrawal latency in response to noxious thermal stimulus. The paw withdrawal threshold and paw withdrawal latencies were significantly decreased after inoculation of tumor cells, whereas administration of scutellarin significantly attenuated tumor cell inoculation-induced mechanical and heat hyperalgesia. Tumor cell inoculation-induced tumor growth was also significantly abrogated by scutellarin. Ca2+/calmodulin-dependent protein kinase II is a multifunctional kinase with up-regulated activity in bone pain models. The activation of Ca2+/calmodulin-dependent protein kinase II triggers phosphorylation of cAMP-response element binding protein. Scutellarin significantly reduced the expression of phosphorylated-Ca2+/calmodulin-dependent protein kinase II and phosphorylated-cAMP-response element binding protein in cancer-induced bone pain rats. Collectively, our study demonstrated that scutellarin attenuated tumor cell inoculation-induced bone pain by down-regulating the expression of phosphorylated-Ca2+/calmodulin-dependent protein kinase II and phosphorylated-cAMP-response element binding protein. The suppressive effect of scutellarin on phosphorylated-Ca2+/calmodulin-dependent protein kinase II/phosphorylated-cAMP-response element binding protein activation may serve as a novel therapeutic strategy for CIBP management.


Circulation ◽  
1995 ◽  
Vol 92 (8) ◽  
pp. 2041-2043 ◽  
Author(s):  
Frank Ulrich Müller ◽  
Peter Bokník ◽  
Andreas Horst ◽  
Jörg Knapp ◽  
Bettina Linck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document