scholarly journals A Vector Finder Toolkit for Track Reconstruction in MPD ITS

Particles ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 186-193
Author(s):  
Dmitry Zinchenko ◽  
Eduard Nikonov ◽  
Veronika Vasendina ◽  
Alexander Zinchenko

As a part of the future upgrade program of the Multi-Purpose Detector (MPD) experiment at the Nuclotron-Based Ion Collider Facility (NICA) complex, an Inner Tracking System (ITS) made of Monolitic Active Pixel Sensors (MAPSs) is proposed between the beam pipe and the Time Projection Chamber (TPC). It is expected that the new detector will enhance the experimental potential for the reconstruction of short-lived particles—in particular, those containing the open charm particle. To study the detector performance and select its best configuration, a track reconstruction approach based on a constrained combinatorial search was developed and implemented as a software toolkit called Vector Finder. This paper describes the proposed approach and demonstrates its characteristics for primary and secondary track finding in ITS, ITS-to-TPC track matching and hyperon reconstruction within the MPD software framework. The results were obtained on a set of simulated central gold–gold collision events at sNN=9 GeV with an average multiplicity of ∼1000 charged particles in the detector acceptance produced with the Ultra-Relativistic Quantum Molecular Dynamics (UrQMD) generator.

2019 ◽  
Vol 204 ◽  
pp. 07006 ◽  
Author(s):  
Dmitry Zinchenko ◽  
Eduard Nikonov ◽  
Alexander Zinchenko

An inner tracking system (ITS) based on silicon pixel sensors is currently considered as one of the possible MPD upgrade steps. The main purpose of the new detector is to provide a better precision of the primary and secondary vertex reconstruction and improve track reconstruction in MPD in the region close to the interaction point. To study the ITS performance a new track finding algorithm was developed, which better takes into account the new system’s advantages. In this paper the new algorithm is described and first results obtained on simulated data are presented.


Particles ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 333-342
Author(s):  
Ignacio Lázaro Roche

Tomography based on cosmic muon absorption is a rising technique because of its versatility and its consolidation as a geophysics tool over the past decade. It allows us to address major societal issues such as long-term stability of natural and man-made large infrastructures or sustainable underwater management. Traditionally, muon trackers consist of hodoscopes or multilayer detectors. For applications with challenging available volumes or the wide field of view required, a thin time projection chamber (TPC) associated with a Micromegas readout plane can provide a good tradeoff between compactness and performance. This paper details the design of such a TPC aiming at maximizing primary signal and minimizing track reconstruction artifacts. The results of the measurements performed during a case study addressing the aforementioned applications are discussed. The current works lines and perspectives of the project are also presented.


2021 ◽  
Vol 251 ◽  
pp. 04004
Author(s):  
Pascal Herve Blanc ◽  
Patricia Mendez Lorenzo ◽  
Xavier Pons

During the LHC Long Shutdown 2, the ALICE experiment has undergone numerous upgrades to cope with the large amount of data expected. Among all new elements integrated into ALICE, the experiment counts with a new Inner Tracking System (ITS), with innovative pixel sensors that will substantially improve the performance of the system. The new detector is powered up through a complex Low Voltage (LV) distribution, increasing the power dissipated by the detector and requiring the installation of a large number of temperature measurement points. In 2020, a new safety system has been developed to distribute the ITS LV interlock system and to monitor the new temperature values. The safety system is based on a Siemens S7-1500 PLC device. The control application governing the PLC has been configured through the UNICOS-CPC infrastructure made at CERN for the standardisation of industrial applications. UNICOS-CPC enables both the automatisation of control tasks governing the PLC and the interface to the WinCC OA based SCADA system. This paper provides a complete description of the setup of this safety system.


2020 ◽  
pp. 171-254
Author(s):  
Hermann Kolanoski ◽  
Norbert Wermes

Detectors that record charged particles through their ionisation of gases are found in many experiments of nuclear and particle physics. By conversion of the charges created along a track into electrical signals, particle trajectories can be measured with these detectors in large volumes, also inside magnetic fields. The operation principles of gaseous detectors are explained, which include charge generation, gas amplification, operation modes and gas mixtures. Different detector types are described in some detail, starting with ionisation chambers without gas amplification, proceeding to those with gas amplification like spark and streamer chambers, parallel plate arrangements, multi-wire proportional chambers, chambers with microstructured electrodes, drift chambers, and ending with time-projection chambers. The chapter closes with an overview of aging effects in gaseous detectors which cause negative alterations of the detector performance.


Instruments ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Jonathan Asaadi ◽  
Martin Auger ◽  
Antonio Ereditato ◽  
Damian Goeldi ◽  
Umut Kose ◽  
...  

Traditional charge readout technologies of single-phase Liquid Argon Time projection Chambers (LArTPCs) based on projective wire readout introduce intrinsic ambiguities in event reconstruction. Combined with the slow response inherent in LArTPC detectors, reconstruction ambiguities have limited their performance, until now. Here, we present a proof of principle of a pixelated charge readout that enables the full 3D tracking capabilities of LArTPCs. We characterize the signal-to-noise ratio of charge readout chain to be about 14, and demonstrate track reconstruction on 3D space points produced by the pixel readout. This pixelated charge readout makes LArTPCs a viable option for high-multiplicity environments.


2019 ◽  
Vol 214 ◽  
pp. 01050 ◽  
Author(s):  
David Rohr ◽  
Sergey Gorbunov ◽  
Schmidt Ole Marten ◽  
Ruben Shahoyan

In LHC Run 3, ALICE will increase the data taking rate significantly to 50 kHz continuous read-out of minimum bias Pb—Pb collisions. The reconstruction strategy of the online-offline computing upgrade foresees a first synchronous online reconstruction stage during data taking enabling detector calibration and data compression, and a posterior calibrated asynchronous reconstruction stage. Many new challenges arise, among them continuous TPC read-out, more overlapping collisions, no a priori knowledge of the primary vertex and of location-dependent calibration in the synchronous phase, identification of low-momentum looping tracks, and sophisticated raw data compression. The tracking algorithm for the Time Projection Chamber (TPC) will be based on a Cellular Automaton and the Kalman filter. The reconstruction shall run online, processing 50 times more collisions per second than today, while yielding results comparable to current offline reconstruction. Our TPC track finding leverages the potential of hardware accelerators via the OpenCL and CUDA APIs in a shared source code for CPUs and GPUs for both reconstruction stages. We give an overview of the status of Run 3 tracking including performance on processors and GPUs and achieved compression ratios.


2018 ◽  
Vol 177 ◽  
pp. 04004
Author(s):  
Sergei Bazylev ◽  
Mikhail Kapishin ◽  
Kacper Kapusniak ◽  
Vladimir Karjavine ◽  
Sergei Khabarov ◽  
...  

BM@N is the fixed target experiment at the accelerator complex NICA-Nuclotron aimed to study nuclear matter in the relativistic heavy ion collisions. Triple-GEM detectors were identified as appropriate for the BM@N tracking system located inside the analyzing magnet. Seven GEM chambers are integrated into the BM@N experimental setup and data acquisition system. GEM construction, main characteristics and first obtained results of the GEM tracking system performance in the technical run with the deuteron beam are shortly reviewed.


Sign in / Sign up

Export Citation Format

Share Document