scholarly journals Strong Inhibitory Activity and Action Modes of Synthetic Maslinic Acid Derivative on Highly Pathogenic Coronaviruses: COVID-19 Drug Candidate

Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 623
Author(s):  
Raya Soltane ◽  
Amani Chrouda ◽  
Ahmed Mostafa ◽  
Ahmed A. Al-Karmalawy ◽  
Karim Chouaïb ◽  
...  

In late December 2019, a novel coronavirus, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), escaped the animal–human interface and emerged as an ongoing global pandemic with severe flu-like illness, commonly known as coronavirus disease 2019 (COVID-19). In this study, a molecular docking study was carried out for seventeen (17) structural analogues prepared from natural maslinic and oleanolic acids, screened against SARS-CoV-2 main protease. Furthermore, we experimentally validated the virtual data by measuring the half-maximal cytotoxic and inhibitory concentrations of each compound. Interestingly, the chlorinated isoxazole linked maslinic acid (compound 17) showed promising antiviral activity at micromolar non-toxic concentrations. Thoughtfully, we showed that compound 17 mainly impairs the viral replication of SARS-CoV-2. Furthermore, a very promising SAR study for the examined compounds was concluded, which could be used by medicinal chemists in the near future for the design and synthesis of potential anti-SARS-CoV-2 candidates. Our results could be very promising for performing further additional in vitro and in vivo studies on the tested compound (17) before further licensing for COVID-19 treatment.

Author(s):  
MANOJ GADEWAR ◽  
BHARAT LAL

Objective: The aim of present investigation is docking of various existing antiviral, anti-tubercular and anti-malarial drugs on 6LU7 receptor of SARS-CoV-2 in the treatment of COVID-19. Methods: In this study, the structure of coronavirus binding protein and ligands for various drugs were collected from the protein data bank and pub chem. Molecular docking was carried out using Schrodinger 9.0 software. In molecular docking study, 19 different drugs of various categories like antiviral, anti-malarial and anti-tubercular were investigated for analyzing binding to 6LU7 receptors of COVID-19. Results: The docking result showed a high affinity of zanamivir, montelukast, ramdesvir, ritonavir, cobicistat and favipravir to the 6LU7 receptor of novel coronavirus. Thus the combination of these drugs may be useful in preventing further infection and can be used as a potential target for further in vitro and in vivo studies of SARS-CoV-2. Conclusion: Treatment of COVID-19 has been challenge due to the non-availability of effective drug therapy. In this study, we reported drugs for targeting 6LU7 Mpro/3Clpro protein, which showed prominent effects as potential inhibitors of COVID-19 Mpro.


Author(s):  
Hassanein H Hassanein ◽  
Doaa E Abdel Rahman ◽  
Marwa A Fouad ◽  
Rehab F Ahmed

New hexahydropyrimido[1,2- a]azepine derivatives bearing functionalized aryl and heterocyclic moieties were synthesized as anti-inflammatory agents with better safety profiles. All synthesized compounds were assessed in vitro for their COX-1 and COX-2 inhibition activities. The most selective compounds, 2f, 5 and 6, were further evaluated for their in vivo anti-inflammatory activity and PGE2 inhibitory activity. To rationalize their selectivity, molecular docking within COX-1 and COX-2 binding sites was performed. Their physicochemical properties and drug-like nature profile were also calculated. The good activity and selectivity of compounds 2f, 5 and 6 were rationalized using a molecular docking study and supported by in vivo studies. These promising findings are encouraging for performing future investigations of these derivatives.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (08) ◽  
pp. 16-24
Author(s):  
Mohammed Oday Ezzat ◽  
Basma M. Abd Razik ◽  
Kutayba F. Dawood

The prevalence of a novel coronavirus (2019-nCoV) in the last few months represents a serious threat as a world health emergency concern. Angiotensin-converting enzyme 2 (ACE2) is the host cellular receptor for the respiratory syndrome of coronavirus epidemic in 2019 (2019-nCoV). In this work, the active site of ACE2 is successfully located by Sitmap prediction tool and validated by different marketed drugs. To design and discover new medical countermeasure drugs, we evaluate a total of 184 molecules of 7-chloro-N-methylquinolin-4-amine derivatives for binding affinity inside the crystal structure of ACE2 located active site. A novel series of N-substituted 2,5-bis[(7-chloroquinolin-4-yl)amino]pentanoic acid derivatives is generated and evaluated for a prospect as a lead compound for (2019-nCoV) medication with a docking score range of (-10.60 to -8.99) kcal/mol for the highest twenty derivatives. Moreover, the ADME pharmaceutical properties were evaluated for further proposed experimental evaluation in vitro or in vivo


2003 ◽  
Vol 13 (22) ◽  
pp. 4077-4080 ◽  
Author(s):  
Moorthy S.S. Palanki ◽  
Paul E. Erdman ◽  
Minghuan Ren ◽  
Mark Suto ◽  
Brydon L. Bennett ◽  
...  

2020 ◽  
Author(s):  
pooja singh ◽  
Angkita Sharma ◽  
Shoma Paul Nandi

<p>Within the span of a few months, the severe acute respiratory syndrome coronavirus, COVID-19 (SARS-CoV-2), has proven to be a pandemic, affecting the world at an exponential rate. It is extremely pathogenic and causes communicable infection in humans. Viral infection causes difficulties in breathing, sore throat, cough, high fever, muscle pain, diarrhea, dyspnea, and may lead to death. Finding a proper drug and vaccines against this virus is the need of the hour. The RNA genome of COVID19 codes for the main protease M<sup>pro</sup>, which is required for viral multiplication. To identify possible antiviral drug(s), we performed molecular docking studies. Our screen identified ten biomolecules naturally present in <i>Aspergillus flavus</i> and <i>Aspergillus oryzae</i> fungi. These molecules include Aspirochlorine, Aflatoxin B1, Alpha-Cyclopiazonic acid, Sporogen, Asperfuran, Aspergillomarasmine A, Maltoryzine, Kojic acid, Aflatrem and Ethyl 3-nitropropionic acid, arranged in the descending order of their docking score. Aspirochlorine exhibited the docking score of – 7.18 Kcal/mole, higher than presently used drug Chloroquine (-6.2930522 Kcal/mol) and out of ten ligands studied four has docking score higher than chloroquine. These natural bioactive compounds could be tested for their ability to inhibit viral growth <i>in- vitro</i> and <i>in-vivo</i>.<b> </b></p>


Author(s):  
Siva Ram

Covid-19, an infectious disease caused by a novel coronavirus SARS-CoV-2 spreads primarily through droplets of saliva or discharge from the nose when an infected person talks, coughs or sneezes where the viruses are active in the environment within the suspended micro droplets. Sanitization of environment to weaken/terminate the virus and halting the replication of virus inside the host along with symptomatic treatment is the primary approach to end the pandemic. In Ayurveda, Dhupana (medicated fumigation of vicinity) and Dhumapana (medicated smoking) therapies done by drugs of herbal/animal/mineral origin are a swift way to decontaminate the environment and Respiratory system. Dhuma (medicated fumes) is a unique drug delivery system acting directly on respiratory tissues which can deliver quick results in this Covid-19 pandemic by its local and systematic effects recommended by AYUSH ministry in the guidelines for Covid-19. We intend to put forward the scientific explanation of powerful Ayurvedic Cannabis based polyherbal dhumapana (medicated smoking) medication named Dhuma Yoga available in the market as an alternate remedy for Covid-19 whose four out of five herbal ingredients are in the list of WHO manual of traditional medicine. We emphasized on Vijaya (Cannabis sativa Linn.) as the centre of formulation because it is a Rasayana (rejuvenative) herb having Vyavayi (fast acting) and Yogavahi (synergetic) properties. Phytochemicals of all the herbal ingredients of Dhuma Yoga formulation are studied through in silico, In vitro and In vivo studies for Covid-19 with favourable outcomes.


Biomedicines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 68 ◽  
Author(s):  
Md. Adnan ◽  
Md. Nazim Uddin Chy ◽  
A.T.M. Mostafa Kamal ◽  
Md Obyedul Kalam Azad ◽  
Kazi Asfak Ahmed Chowdhury ◽  
...  

Piper sylvaticum Roxb. is traditionally used by the indigenous people of tropical and subtropical countries like Bangladesh, India, and China for relieving the common cold or a variety of chronic diseases, such as asthma, chronic coughing, piles, rheumatic pain, headaches, wounds, tuberculosis, indigestion, and dyspepsia. This study tested anxiolytic and antioxidant activities by in vivo, in vitro, and in silico experiments for the metabolites extracted (methanol) from the leaves and stems of P. sylvaticum (MEPSL and MEPSS). During the anxiolytic evaluation analyzed by elevated plus maze and hole board tests, MEPSL and MEPSS (200 and 400 mg/kg, body weight) exhibited a significant and dose-dependent reduction of anxiety-like behavior in mice. Similarly, mice treated with MEPSL and MEPSS demonstrated dose-dependent increases in locomotion and CNS simulative effects in open field test. In addition, both extracts (MEPSL and MEPSS) also showed moderate antioxidant activities in DPPH scavenging and ferric reducing power assays compared to the standard, ascorbic acid. In parallel, previously isolated bioactive compounds from this plant were documented and subjected to a molecular docking study to correlate them with the pharmacological outcomes. The selected four major phytocompounds displayed favorable binding affinities to potassium channel and xanthine oxidoreductase enzyme targets in molecular docking experiments. Overall, P. sylvaticum is bioactive, as is evident through experimental and computational analysis. Further experiments are necessary to evaluate purified novel compounds for the clinical evaluation.


Author(s):  
Manisha S. Phoujdar ◽  
Gourishankar R. Aland

Objective: CDK2 inhibitors are implicated in several carcinomas viz. Carcinoma of lung, bladder, sarcomas and retinoblastoma. Pyrazolopyrimidines, being purine bioisosters inhibit more than one type of kinase. In this study, we are studying some novel derivatives of 1H-pyrazolo [3,4d] pyrimidines not reported earlier. The objective of the present study is an attempt towards design and development of 1H-[3,4-] pyrazolo-pyrimidines as CDK2 inhibitors through rational drug design.Methods: The present study has been done on CDK2 structure, PDB ID, 3WBL, co-crystallized with ligand PDY from RCSB protein data bank. A series of seventeen 1H-Pyrazolo [3,4-d] pyrimidines feasible for synthesis was docked on the said CDK2 receptor using Auto Dock 4 version, 1.5.6. Outputs were exported to discovery studio 3.5 client for visual inspection of the binding modes and interactions of the compounds with amino acid residues in the active sites.Results: The results of docking studies revealed that the present series of 1H-Pyrazolo[3,4-d] pyrimidines is showing significant binding through hydrogen bonding, hydrophobic, pi and Van der waals interactions, similar to the ligand PDY. Some conserved H-bond interactions comparable to bioisosters and compounds presently under human trials were noted. Ki values predicted in silico also suggest that the series will show promising CDK2 inhibitory activity.Conclusion: The series designed and docked can be further developed by synthesis and in vitro and in vivo activity. The receptor inhibitory activity can also be checked by specific receptor assays.


2020 ◽  
Author(s):  
sabri ahmed cherrak ◽  
merzouk hafida ◽  
mokhtari soulimane nassima

A novel (COVID-19) responsible of acute respiratory infection closely related to SARS-CoV has recently emerged. So far there is no consensus for drug treatment to stop the spread of the virus. Discovery of a drug that would limit the virus expansion is one of the biggest challenges faced by the humanity in the last decades. In this perspective, testing existing drugs as inhibitors of the main COVID-19 protease is a good approach.Among natural phenolic compounds found in plants, fruit, and vegetables; flavonoids are the most abundant. Flavonoids, especially in their glycosylated forms, display a number of physiological activities, which makes them interesting to investigate as antiviral molecules.The flavonoids chemical structures were downloaded from PubChem and protease structure 6lu7 was from the Protein Data Bank site. Molecular docking study was performed using AutoDock Vina. Among the tested molecules Quercetin-3-O-rhamnoside showed the highest binding affinity (-9,7 kcal/mol). Docking studies showed that glycosylated flavonoids are good inhibitors for the covid-19 protease and could be further investigated by in vitro and in vivo experiments for further validation.


Sign in / Sign up

Export Citation Format

Share Document