scholarly journals Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review

Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1604
Author(s):  
Nelisiwe Mkize ◽  
Azwihangwisi Maiwashe ◽  
Kennedy Dzama ◽  
Bekezela Dube ◽  
Ntanganedzeni Mapholi

Understanding the biological mechanisms underlying tick resistance in cattle holds the potential to facilitate genetic improvement through selective breeding. Genome wide association studies (GWAS) are popular in research on unraveling genetic determinants underlying complex traits such as tick resistance. To date, various studies have been published on single nucleotide polymorphisms (SNPs) associated with tick resistance in cattle. The discovery of SNPs related to tick resistance has led to the mapping of associated candidate genes. Despite the success of these studies, information on genetic determinants associated with tick resistance in cattle is still limited. This warrants the need for more studies to be conducted. In Africa, the cost of genotyping is still relatively expensive; thus, conducting GWAS is a challenge, as the minimum number of animals recommended cannot be genotyped. These population size and genotype cost challenges may be overcome through the establishment of collaborations. Thus, the current review discusses GWAS as a tool to uncover SNPs associated with tick resistance, by focusing on the study design, association analysis, factors influencing the success of GWAS, and the progress on cattle tick resistance studies.

2016 ◽  
Vol 283 (1835) ◽  
pp. 20160569 ◽  
Author(s):  
M. E. Goddard ◽  
K. E. Kemper ◽  
I. M. MacLeod ◽  
A. J. Chamberlain ◽  
B. J. Hayes

Complex or quantitative traits are important in medicine, agriculture and evolution, yet, until recently, few of the polymorphisms that cause variation in these traits were known. Genome-wide association studies (GWAS), based on the ability to assay thousands of single nucleotide polymorphisms (SNPs), have revolutionized our understanding of the genetics of complex traits. We advocate the analysis of GWAS data by a statistical method that fits all SNP effects simultaneously, assuming that these effects are drawn from a prior distribution. We illustrate how this method can be used to predict future phenotypes, to map and identify the causal mutations, and to study the genetic architecture of complex traits. The genetic architecture of complex traits is even more complex than previously thought: in almost every trait studied there are thousands of polymorphisms that explain genetic variation. Methods of predicting future phenotypes, collectively known as genomic selection or genomic prediction, have been widely adopted in livestock and crop breeding, leading to increased rates of genetic improvement.


2019 ◽  
Vol 20 (10) ◽  
pp. 765-780 ◽  
Author(s):  
Diana Cruz ◽  
Ricardo Pinto ◽  
Margarida Freitas-Silva ◽  
José Pedro Nunes ◽  
Rui Medeiros

Atrial fibrillation (AF) and stroke are included in a group of complex traits that have been approached regarding of their study by susceptibility genetic determinants. Since 2007, several genome-wide association studies (GWAS) aiming to identify genetic variants modulating AF risk have been conducted. Thus, 11 GWAS have identified 26 SNPs (p < 5 × 10-2), of which 19 reached genome-wide significance (p < 5 × 10-8). From those variants, seven were also associated with cardioembolic stroke and three reached genome-wide significance in stroke GWAS. These associations may shed a light on putative shared etiologic mechanisms between AF and cardioembolic stroke. Additionally, some of these identified variants have been incorporated in genetic risk scores in order to elucidate new approaches of stroke prediction, prevention and treatment.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1002
Author(s):  
Yagoub Adam ◽  
Chaimae Samtal ◽  
Jean-tristan Brandenburg ◽  
Oluwadamilare Falola ◽  
Ezekiel Adebiyi

Genome-wide association studies (GWAS) provide  huge information on statistically significant single-nucleotide polymorphisms (SNPs) associated with various human complex traits and diseases. By performing GWAS studies, scientists have successfully identified the association of hundreds of thousands to  millions of SNPs to a single phenotype. Moreover, the association of some SNPs with rare diseases has been intensively tested. However, classic GWAS studies have not yet provided solid, knowledgeable insight into functional and biological mechanisms underlying phenotypes or mechanisms of diseases. Therefore, several post-GWAS (pGWAS) methods have been recommended. Currently, there is no simple scientific document to provide a quick guide for performing pGWAS analysis. pGWAS is a crucial step for a better understanding of the biological machinery beyond the SNPs. Here, we provide an overview to performing pGWAS analysis and demonstrate the challenges behind each method. Furthermore, we direct readers to key articles for each pGWAS method and present the overall issues in pGWAS analysis.  Finally, we include a custom pGWAS pipeline to guide new users when performing their research.


2017 ◽  
Vol 48 (7) ◽  
pp. 1055-1067 ◽  
Author(s):  
R. M. Maier ◽  
P. M. Visscher ◽  
M. R. Robinson ◽  
N. R. Wray

AbstractThe availability of genome-wide genetic data on hundreds of thousands of people has led to an equally rapid growth in methodologies available to analyse these data. While the motivation for undertaking genome-wide association studies (GWAS) is identification of genetic markers associated with complex traits, once generated these data can be used for many other analyses. GWAS have demonstrated that complex traits exhibit a highly polygenic genetic architecture, often with shared genetic risk factors across traits. New methods to analyse data from GWAS are increasingly being used to address a diverse set of questions about the aetiology of complex traits and diseases, including psychiatric disorders. Here, we give an overview of some of these methods and present examples of how they have contributed to our understanding of psychiatric disorders. We consider: (i) estimation of the extent of genetic influence on traits, (ii) uncovering of shared genetic control between traits, (iii) predictions of genetic risk for individuals, (iv) uncovering of causal relationships between traits, (v) identifying causal single-nucleotide polymorphisms and genes or (vi) the detection of genetic heterogeneity. This classification helps organise the large number of recently developed methods, although some could be placed in more than one category. While some methods require GWAS data on individual people, others simply use GWAS summary statistics data, allowing novel well-powered analyses to be conducted at a low computational burden.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Laure Denoyelle ◽  
Estelle Talouarn ◽  
Philippe Bardou ◽  
Licia Colli ◽  
Adriana Alberti ◽  
...  

Abstract Background Since their domestication 10,500 years ago, goat populations with distinctive genetic backgrounds have adapted to a broad variety of environments and breeding conditions. The VarGoats project is an international 1000-genome resequencing program designed to understand the consequences of domestication and breeding on the genetic diversity of domestic goats and to elucidate how speciation and hybridization have modeled the genomes of a set of species representative of the genus Capra. Findings A dataset comprising 652 sequenced goats and 507 public goat sequences, including 35 animals representing eight wild species, has been collected worldwide. We identified 74,274,427 single nucleotide polymorphisms (SNPs) and 13,607,850 insertion-deletions (InDels) by aligning these sequences to the latest version of the goat reference genome (ARS1). A Neighbor-joining tree based on Reynolds genetic distances showed that goats from Africa, Asia and Europe tend to group into independent clusters. Because goat breeds from Oceania and Caribbean (Creole) all derive from imported animals, they are distributed along the tree according to their ancestral geographic origin. Conclusions We report on an unprecedented international effort to characterize the genome-wide diversity of domestic goats. This large range of sequenced individuals represents a unique opportunity to ascertain how the demographic and selection processes associated with post-domestication history have shaped the diversity of this species. Data generated for the project will also be extremely useful to identify deleterious mutations and polymorphisms with causal effects on complex traits, and thus will contribute to new knowledge that could be used in genomic prediction and genome-wide association studies.


2018 ◽  
Author(s):  
Susanne Gerber ◽  
David Fournier ◽  
Charlotte Hewel ◽  
Illia Horenko

Genetic association studies have become increasingly important in unraveling the genetics of diseases or complex traits. Despite their value for modern genetics, conflicting conclusions often arise through the difficulty of confirming and replicating experimental results. We argue that this problem is largely based on the application of statistical relation measures that are not appropriate for genomic data analysis and demonstrate that the standard measures used for Genome-wide association studies or genomics linkage analysis bear a statistic bias. This may come from the violation of underlying assumptions (such as independence or stationarity) as well as from other conceptual limitations in the measures or relations, such as missing invariance with respect to coding or the inability to reflect latent factors. Attempts to introduce unbiased relation measures that avoid these limitations are usually computationally expensive and do not scale for large data sizes being typical for genomics applications.To tackle these problems, we propose a straightforwardly computable relation measure called Linkage Probability (LP). This measure provides the posterior probability of a relation between two categorical data sets and considers potential biases from latent variables. We compare several aspects of popular relation measures through an illustrative example and human genomics data. We demonstrate that the application of LP to the analysis of Single Nucleotide Polymorphisms (SNP) reveals latent 3D steric effects within 1D SNP data, that approximate to chromatin loops captured by high resolution Hi-C maps.


2021 ◽  
Vol 14 (4) ◽  
pp. 287
Author(s):  
Courtney M. Vecera ◽  
Gabriel R. Fries ◽  
Lokesh R. Shahani ◽  
Jair C. Soares ◽  
Rodrigo Machado-Vieira

Despite being the most widely studied mood stabilizer, researchers have not confirmed a mechanism for lithium’s therapeutic efficacy in Bipolar Disorder (BD). Pharmacogenomic applications may be clinically useful in the future for identifying lithium-responsive patients and facilitating personalized treatment. Six genome-wide association studies (GWAS) reviewed here present evidence of genetic variations related to lithium responsivity and side effect expression. Variants were found on genes regulating the glutamate system, including GAD-like gene 1 (GADL1) and GRIA2 gene, a mutually-regulated target of lithium. In addition, single nucleotide polymorphisms (SNPs) discovered on SESTD1 may account for lithium’s exceptional ability to permeate cell membranes and mediate autoimmune and renal effects. Studies also corroborated the importance of epigenetics and stress regulation on lithium response, finding variants on long, non-coding RNA genes and associations between response and genetic loading for psychiatric comorbidities. Overall, the precision medicine model of stratifying patients based on phenotype seems to derive genotypic support of a separate clinical subtype of lithium-responsive BD. Results have yet to be expounded upon and should therefore be interpreted with caution.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1175
Author(s):  
Amarni L. Thomas ◽  
Judith Marsman ◽  
Jisha Antony ◽  
William Schierding ◽  
Justin M. O’Sullivan ◽  
...  

The RUNX1/AML1 gene encodes a developmental transcription factor that is an important regulator of haematopoiesis in vertebrates. Genetic disruptions to the RUNX1 gene are frequently associated with acute myeloid leukaemia. Gene regulatory elements (REs), such as enhancers located in non-coding DNA, are likely to be important for Runx1 transcription. Non-coding elements that modulate Runx1 expression have been investigated over several decades, but how and when these REs function remains poorly understood. Here we used bioinformatic methods and functional data to characterise the regulatory landscape of vertebrate Runx1. We identified REs that are conserved between human and mouse, many of which produce enhancer RNAs in diverse tissues. Genome-wide association studies detected single nucleotide polymorphisms in REs, some of which correlate with gene expression quantitative trait loci in tissues in which the RE is active. Our analyses also suggest that REs can be variant in haematological malignancies. In summary, our analysis identifies features of the RUNX1 regulatory landscape that are likely to be important for the regulation of this gene in normal and malignant haematopoiesis.


2021 ◽  
Author(s):  
Robin N Beaumont ◽  
Isabelle K Mayne ◽  
Rachel M Freathy ◽  
Caroline F Wright

Abstract Birth weight is an important factor in newborn survival; both low and high birth weights are associated with adverse later-life health outcomes. Genome-wide association studies (GWAS) have identified 190 loci associated with maternal or fetal effects on birth weight. Knowledge of the underlying causal genes is crucial to understand how these loci influence birth weight and the links between infant and adult morbidity. Numerous monogenic developmental syndromes are associated with birth weights at the extreme ends of the distribution. Genes implicated in those syndromes may provide valuable information to prioritize candidate genes at the GWAS loci. We examined the proximity of genes implicated in developmental disorders (DDs) to birth weight GWAS loci using simulations to test whether they fall disproportionately close to the GWAS loci. We found birth weight GWAS single nucleotide polymorphisms (SNPs) fall closer to such genes than expected both when the DD gene is the nearest gene to the birth weight SNP and also when examining all genes within 258 kb of the SNP. This enrichment was driven by genes causing monogenic DDs with dominant modes of inheritance. We found examples of SNPs in the intron of one gene marking plausible effects via different nearby genes, highlighting the closest gene to the SNP not necessarily being the functionally relevant gene. This is the first application of this approach to birth weight, which has helped identify GWAS loci likely to have direct fetal effects on birth weight, which could not previously be classified as fetal or maternal owing to insufficient statistical power.


Sign in / Sign up

Export Citation Format

Share Document