GWAS contribution to atrial fibrillation and atrial fibrillation-related stroke: pathophysiological implications

2019 ◽  
Vol 20 (10) ◽  
pp. 765-780 ◽  
Author(s):  
Diana Cruz ◽  
Ricardo Pinto ◽  
Margarida Freitas-Silva ◽  
José Pedro Nunes ◽  
Rui Medeiros

Atrial fibrillation (AF) and stroke are included in a group of complex traits that have been approached regarding of their study by susceptibility genetic determinants. Since 2007, several genome-wide association studies (GWAS) aiming to identify genetic variants modulating AF risk have been conducted. Thus, 11 GWAS have identified 26 SNPs (p < 5 × 10-2), of which 19 reached genome-wide significance (p < 5 × 10-8). From those variants, seven were also associated with cardioembolic stroke and three reached genome-wide significance in stroke GWAS. These associations may shed a light on putative shared etiologic mechanisms between AF and cardioembolic stroke. Additionally, some of these identified variants have been incorporated in genetic risk scores in order to elucidate new approaches of stroke prediction, prevention and treatment.

2019 ◽  
Author(s):  
Tom G Richardson ◽  
Gibran Hemani ◽  
Tom R Gaunt ◽  
Caroline L Relton ◽  
George Davey Smith

AbstractBackgroundDeveloping insight into tissue-specific transcriptional mechanisms can help improve our understanding of how genetic variants exert their effects on complex traits and disease. By applying the principles of Mendelian randomization, we have undertaken a systematic analysis to evaluate transcriptome-wide associations between gene expression across 48 different tissue types and 395 complex traits.ResultsOverall, we identified 100,025 gene-trait associations based on conventional genome-wide corrections (P < 5 × 10−08) that also provided evidence of genetic colocalization. These results indicated that genetic variants which influence gene expression levels in multiple tissues are more likely to influence multiple complex traits. We identified many examples of tissue-specific effects, such as genetically-predicted TPO, NR3C2 and SPATA13 expression only associating with thyroid disease in thyroid tissue. Additionally, FBN2 expression was associated with both cardiovascular and lung function traits, but only when analysed in heart and lung tissue respectively.We also demonstrate that conducting phenome-wide evaluations of our results can help flag adverse on-target side effects for therapeutic intervention, as well as propose drug repositioning opportunities. Moreover, we find that exploring the tissue-dependency of associations identified by genome-wide association studies (GWAS) can help elucidate the causal genes and tissues responsible for effects, as well as uncover putative novel associations.ConclusionsThe atlas of tissue-dependent associations we have constructed should prove extremely valuable to future studies investigating the genetic determinants of complex disease. The follow-up analyses we have performed in this study are merely a guide for future research. Conducting similar evaluations can be undertaken systematically at http://mrcieu.mrsoftware.org/Tissue_MR_atlas/.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 1528-1528
Author(s):  
Heena Desai ◽  
Anh Le ◽  
Ryan Hausler ◽  
Shefali Verma ◽  
Anurag Verma ◽  
...  

1528 Background: The discovery of rare genetic variants associated with cancer have a tremendous impact on reducing cancer morbidity and mortality when identified; however, rare variants are found in less than 5% of cancer patients. Genome wide association studies (GWAS) have identified hundreds of common genetic variants significantly associated with a number of cancers, but the clinical utility of individual variants or a polygenic risk score (PRS) derived from multiple variants is still unclear. Methods: We tested the ability of polygenic risk score (PRS) models developed from genome-wide significant variants to differentiate cases versus controls in the Penn Medicine Biobank. Cases for 15 different cancers and cancer-free controls were identified using electronic health record billing codes for 11,524 European American and 5,994 African American individuals from the Penn Medicine Biobank. Results: The discriminatory ability of the 15 PRS models to distinguish their respective cancer cases versus controls ranged from 0.68-0.79 in European Americans and 0.74-0.93 in African Americans. Seven of the 15 cancer PRS trended towards an association with their cancer at a p<0.05 (Table), and PRS for prostate, thyroid and melanoma were significantly associated with their cancers at a bonferroni corrected p<0.003 with OR 1.3-1.6 in European Americans. Conclusions: Our data demonstrate that common variants with significant associations from GWAS studies can distinguish cancer cases versus controls for some cancers in an unselected biobank population. Given the small effects, future studies are needed to determine how best to incorporate PRS with other risk factors in the precision prediction of cancer risk. [Table: see text]


2020 ◽  
Author(s):  
Min Zhao ◽  
Hong Qu

Abstract Background: Circular RNAs (circRNAs) play important roles in regulating gene expression through binding miRNAs and RNA binding proteins. Genetic variation of circRNAs may affect complex traits/diseases by changing their binding efficiency to target miRNAs and proteins. There is a growing demand for investigations of the functions of genetic changes using large-scale experimental evidence. However, there is no online genetic resource for circRNA genes. Results: We performed extensive genetic annotation of 295,526 circRNAs integrated from circBase, circNet and circRNAdb. All pre-computed genetic variants were presented at our online resource, circVAR, with data browsing and search functionality. We explored the chromosome-based distribution of circRNAs and their associated variants. We found that, based on mapping to the 1000 Genomes and ClinVAR databases, chromosome 17 has a relatively large number of circRNAs and associated common and health-related genetic variants. Following the annotation of genome wide association studies (GWAS)-based circRNA variants, we found many non-coding variants within circRNAs, suggesting novel mechanisms for common diseases reported from GWAS studies. For cancer-based somatic variants, we found that chromosome 7 has many highly complex mutations that have been overlooked in previous research. Conclusion: We used the circVAR database to collect SNPs and small insertions and deletions (INDELs) in putative circRNA regions and to identify their potential phenotypic information. To provide a reusable resource for the circRNA research community, we have published all the pre-computed genetic data concerning circRNAs and associated genes together with data query and browsing functions at http://soft.bioinfo-minzhao.org/circvar .


2020 ◽  
Author(s):  
Meng Luo ◽  
Shiliang Gu

AbstractAlthough genome-wide association studies have successfully identified thousands of markers associated with various complex traits and diseases, our ability to predict such phenotypes remains limited. A perhaps ignored explanation lies in the limitations of the genetic models and statistical techniques commonly used in association studies. However, using genotype data for individuals to perform accurate genetic prediction of complex traits can promote genomic selection in animal and plant breeding and can lead to the development of personalized medicine in humans. Because most complex traits have a polygenic architecture, accurate genetic prediction often requires modeling genetic variants together via polygenic methods. Here, we also utilize our proposed polygenic methods, which refer to as the iterative screen regression model (ISR) for genome prediction. We compared ISR with several commonly used prediction methods with simulations. We further applied ISR to predicting 15 traits, including the five species of cattle, rice, wheat, maize, and mice. The results of the study indicate that the ISR method performs well than several commonly used polygenic methods and stability.


2019 ◽  
Vol 40 (5) ◽  
pp. 661-668 ◽  
Author(s):  
Asahi Hishida ◽  
Tomotaka Ugai ◽  
Ryosuke Fujii ◽  
Masahiro Nakatochi ◽  
Michael C Wu ◽  
...  

Abstract Although recent genome-wide association studies (GWASs) have identified genetic variants associated with Helicobacter pylori (HP)-induced gastric cancer, few studies have examined the genetic traits associated with the risk of HP-induced gastric precancerous conditions. This study aimed to elucidate genetic variants associated with these conditions using a genome-wide approach. Data from four sites of the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study were used in the discovery phase (Stage I); two datasets from the Hospital-based Epidemiologic Research Program at Aichi Cancer Center 2 (HERPACC2) study were used in the replication phases (Stages II and III) and SKAT (SNP-set Kernel Association Test) and single variant-based GWASs were conducted for the risks of gastric atrophy (GA) and severe GA defined by serum pepsinogen (PG) levels, and PG1 and PG1/2 ratios. In the gene-based SKAT in Stage I, prostate stem cell antigen (PSCA) was significantly associated with the risks of GA and severe GA, and serum PG1/2 level by linear kernel [false discovery rate (FDR) = 0.011, 0.230 and 7.2 × 10−7, respectively]. The single variant-based GWAS revealed that nine PSCA single nucleotide polymorphisms (SNPs) fulfilled the genome-wide significance level (P < 5 × 10−8) for the risks of both GA and severe GA in the combined study, although most of these associations did not reach genome-wide significance in the discovery or validation cohort on their own. GWAS for serum PG1 levels and PG1/2 ratios revealed that the PSCA rs2920283 SNP had a striking P-value of 4.31 × 10−27 for PG1/2 ratios. The present GWAS revealed the genetic locus of PSCA as the most significant locus for the risk of HP-induced GA, which confirmed the recently reported association in Europeans.


2014 ◽  
Vol 11 (94) ◽  
pp. 20130908 ◽  
Author(s):  
Beatriz Valcárcel ◽  
Timothy M. D. Ebbels ◽  
Antti J. Kangas ◽  
Pasi Soininen ◽  
Paul Elliot ◽  
...  

Current studies of phenotype diversity by genome-wide association studies (GWAS) are mainly focused on identifying genetic variants that influence level changes of individual traits without considering additional alterations at the system-level. However, in addition to level alterations of single phenotypes, differences in association between phenotype levels are observed across different physiological states. Such differences in molecular correlations between states can potentially reveal information about the system state beyond that reported by changes in mean levels alone. In this study, we describe a novel methodological approach, which we refer to as genome metabolome integrated network analysis (GEMINi) consisting of a combination of correlation network analysis and genome-wide correlation study. The proposed methodology exploits differences in molecular associations to uncover genetic variants involved in phenotype variation. We test the performance of the GEMINi approach in a simulation study and illustrate its use in the context of obesity and detailed quantitative metabolomics data on systemic metabolism. Application of GEMINi revealed a set of metabolic associations which differ between normal and obese individuals. While no significant associations were found between genetic variants and body mass index using a standard GWAS approach, further investigation of the identified differences in metabolic association revealed a number of loci, several of which have been previously implicated with obesity-related processes. This study highlights the advantage of using molecular associations as an alternative phenotype when studying the genetic basis of complex traits and diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marilyn C. Cornelis ◽  
Rob M. van Dam

AbstractCoffee is a widely consumed beverage that is naturally bitter and contains caffeine. Genome-wide association studies (GWAS) of coffee drinking have identified genetic variants involved in caffeine-related pathways but not in taste perception. The taste of coffee can be altered by addition of milk/sweetener, which has not been accounted for in GWAS. Using UK and US cohorts, we test the hypotheses that genetic variants related to taste are more strongly associated with consumption of black coffee than with consumption of coffee with milk or sweetener and that genetic variants related to caffeine pathways are not differentially associated with the type of coffee consumed independent of caffeine content. Contrary to our hypotheses, genetically inferred caffeine sensitivity was more strongly associated with coffee taste preferences than with genetically inferred bitter taste perception. These findings extended to tea and dark chocolate. Taste preferences and physiological caffeine effects intertwine in a way that is difficult to distinguish for individuals which may represent conditioned taste preferences.


2019 ◽  
Author(s):  
Daniel F. Levey ◽  
Joel Gelernter ◽  
Renato Polimanti ◽  
Hang Zhou ◽  
Zhongshan Cheng ◽  
...  

AbstractWe used GWAS in the Million Veteran Program sample (nearly 200,000 informative individuals) using a continuous trait for anxiety (GAD-2) to identify 5 genome-wide significant (GWS) signals for European Americans (EA) and 1 for African Americans. The strongest findings were on chromosome 3 (rs4603973, p=7.40×10−11) near the SATB1 locus, a global regulator of gene expression and on chromosome 6 (rs6557168, p=1.04×10−9) near ESR1 which encodes estrogen receptor α. A locus identified on chromosome 7 near MADIL1 (p=1.62×10−8) has been previously identified in GWAS of bipolar disorder and of schizophrenia and may represent a risk factor for psychiatric disorders broadly. SNP-based heritability was estimated to be ~6% for GAD-2. We also GWASed for self-reported anxiety disorder diagnoses (N=224,330) and identified two GWS loci, one (rs35546597, MAF=0.42, p=1.88×10−8) near the AURKB locus, and the other (rsl0534613, MAF=0.41, p=4.92×10−8) near the IQCHE and MADIL1 locus identified in the GAD-2 analysis. We demonstrate reproducibility by replicating our top findings in the summary statistics from the Anxiety NeuroGenetics Study (ANGST) and a UK Biobank neuroticism GWAS. We also replicated top findings from a large UK Biobank preprint, demonstrating stability of GWAS findings in complex traits once sufficient power is attained. Finally, we found evidence of significant genetic overlap between anxiety and major depression using polygenic risk scores, but also found that the main anxiety signals are independent of those for MDD. This work presents novel insights into the neurobiological risk underpinning anxiety and related psychiatric disorders.SignificanceAnxiety disorders are common and often disabling. They are also frequently co-morbid with other mental disorders such as major depressive disorder (MDD); these disorders may share commonalities in their underlying genetic architecture. Using one of the largest homogenously phenotyped cohorts available, the Million Veteran Program sample, we investigated common variants associated with anxiety in genome-wide association studies (GWASes), using survey results from the GAD-2 anxiety scale (as a continuous trait, n=199,611), and self-reported anxiety disorder diagnosis (as a binary trait, n=224,330). This largest GWAS to date for anxiety and related traits identified numerous novel significant associations, several of which are replicated in other datasets, and allows inference of underlying biology.


2016 ◽  
Vol 47 (6) ◽  
pp. 1116-1125 ◽  
Author(s):  
M. Liu ◽  
S. M. Malone ◽  
U. Vaidyanathan ◽  
M. C. Keller ◽  
G. Abecasis ◽  
...  

BackgroundEndophenotypes are laboratory-based measures hypothesized to lie in the causal chain between genes and clinical disorder, and to serve as a more powerful way to identify genes associated with the disorder. One promise of endophenotypes is that they may assist in elucidating the neurobehavioral mechanisms by which an associated genetic polymorphism affects disorder risk in complex traits. We evaluated this promise by testing the extent to which variants discovered to be associated with schizophrenia through large-scale meta-analysis show associations with psychophysiological endophenotypes.MethodWe genome-wide genotyped and imputed 4905 individuals. Of these, 1837 were whole-genome-sequenced at 11× depth. In a community-based sample, we conducted targeted tests of variants within schizophrenia-associated loci, as well as genome-wide polygenic tests of association, with 17 psychophysiological endophenotypes including acoustic startle response and affective startle modulation, antisaccade, multiple frequencies of resting electroencephalogram (EEG), electrodermal activity and P300 event-related potential.ResultsUsing single variant tests and gene-based tests we found suggestive evidence for an association between contactin 4 (CNTN4) and antisaccade and P300. We were unable to find any other variant or gene within the 108 schizophrenia loci significantly associated with any of our 17 endophenotypes. Polygenic risk scores indexing genetic vulnerability to schizophrenia were not related to any of the psychophysiological endophenotypes after correction for multiple testing.ConclusionsThe results indicate significant difficulty in using psychophysiological endophenotypes to characterize the genetically influenced neurobehavioral mechanisms by which risk loci identified in genome-wide association studies affect disorder risk.


2020 ◽  
Author(s):  
Min Zhao ◽  
Hong Qu

Abstract Background: Circular RNAs (circRNAs) play important roles in regulating gene expression through binding miRNAs and RNA binding proteins. Genetic variation of circRNAs may affect complex traits/diseases by changing their binding efficiency to target miRNAs and proteins. There is a growing demand for investigations of the functions of genetic changes using large-scale experimental evidence. However, there is no online genetic resource for circRNA genes. Results: We performed extensive genetic annotation of 295,526 circRNAs integrated from circBase, circNet and circRNAdb. All pre-computed genetic variants were presented at our online resource, circVAR, with data browsing and search functionality. We explored the chromosome-based distribution of circRNAs and their associated variants. We found that, based on mapping to the 1000 Genomes and ClinVAR databases, chromosome 17 has a relatively large number of circRNAs and associated common and health-related genetic variants. Following the annotation of genome wide association studies (GWAS)-based circRNA variants, we found many non-coding variants within circRNAs, suggesting novel mechanisms for common diseases reported from GWAS studies. For cancer-based somatic variants, we found that chromosome 7 has many highly complex mutations that have been overlooked in previous research.Conclusion: We used the circVAR database to collect SNPs and small insertions and deletions (INDELs) in putative circRNA regions and to identify their potential phenotypic information. To provide a reusable resource for the circRNA research community, we have published all the pre-computed genetic data concerning circRNAs and associated genes together with data query and browsing functions at http://soft.bioinfo-minzhao.org/circvar.


Sign in / Sign up

Export Citation Format

Share Document