scholarly journals Comparative Diagnostic Performance of a Novel Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) Kit for the Rapid Detection of SARS-CoV-2

Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1629
Author(s):  
Alexander Domnich ◽  
Andrea Orsi ◽  
Donatella Panatto ◽  
Vanessa De Pace ◽  
Valentina Ricucci ◽  
...  

Although the reverse transcription-polymerase chain reaction (RT-PCR) is considered a standard-of-care assay for the laboratory diagnosis of SARS-CoV-2, several limitations of this method have been described. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is an alternative molecular assay and is potentially able to overcome some intrinsic shortcomings of RT-PCR. In this study, we evaluated the diagnostic performance of the novel HG COVID-19 RT-LAMP assay. In this retrospective analysis, a total of 400 routinely collected leftover nasopharyngeal samples with a known RT-PCR result were tested by means of the HG COVID-19 RT-LAMP assay. The overall sensitivity and specificity values of HG COVID-19 RT-LAMP versus RT-PCR were 97.0% (95% CI: 93.6–98.9%) and 98.5% (95% CI: 95.7–99.7%), respectively. Inter-assay agreement was almost perfect (κ = 0.96). Concordance was perfect in samples with high viral loads (cycle threshold < 30). The average time to a positive result on RT-LAMP was 17 min. HG COVID-19 RT-LAMP is a reliable molecular diagnostic kit for detecting SARS-CoV-2, and its performance is comparable to that of RT-PCR. Shorter turnaround times and the possibility of performing molecular diagnostics in the point-of-care setting make it a valuable option for facilities without sophisticated laboratory equipment.

2021 ◽  
Author(s):  
Alexander Domnich ◽  
Andrea Orsi ◽  
Donatella Panatto ◽  
Vanessa De Pace ◽  
Valentina Ricucci ◽  
...  

Abstract Although the reverse transcription polymerase chain reaction (RT-PCR) is considered a standard-of-care assay for the laboratory diagnosis of SARS-CoV-2, several limitations of this method have been described. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is an alternative molecular assay and is potentially able to overcome some intrinsic shortcomings of RT-PCR. In this study, we evaluated the diagnostic performance of the novel HG COVID-19 RT-LAMP assay. In this retrospective analysis, a total of 400 routinely collected leftover nasopharyngeal samples with a known RT-PCR result were tested by means of the HG COVID-19 RT-LAMP assay. The overall sensitivity and specificity values of HG COVID-19 RT-LAMP versus RT-PCR were 97.0% (95% CI: 93.6–98.9%) and 98.5% (95% CI: 95.7–99.7%), respectively. Inter-assay agreement was almost perfect (κ = 0.96). Concordance was perfect in samples with high viral loads (cycle threshold <30). The average time to a positive result on RT-LAMP was 17 min. HG COVID-19 RT-LAMP is a reliable molecular diagnostic kit for detecting SARS-CoV-2, and its performance is comparable to that of RT-PCR. Shorter turnaround times and the possibility of performing molecular diagnostics in the point-of-care setting make it a valuable option for facilities without sophisticated laboratory equipment.


Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 699 ◽  
Author(s):  
Mahapatra ◽  
Howson ◽  
Fowler ◽  
Batten ◽  
Flannery ◽  
...  

Peste des petits ruminants (PPR) is a disease of small ruminants caused by peste des petits ruminants virus (PPRV), and is endemic in Asia, the Middle East and Africa. Effective control combines the application of early warning systems, accurate laboratory diagnosis and reporting, animal movement restrictions, suitable vaccination and surveillance programs, and the coordination of all these measures by efficient veterinary services. Molecular assays, including conventional reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR (RT-qPCR) have improved the sensitivity and rapidity of diagnosing PPR. However, currently these assays are only performed within laboratory settings; therefore, the development of field diagnostics for PPR would improve the fast implementation of control policies, particularly when PPR has been targeted to be eradicated by 2030. Loop-mediated isothermal amplification (LAMP) assays are simple to use, rapid, and have sensitivity and specificity within the range of RT-qPCR; and can be performed in the field using disposable consumables and portable equipment. This study describes the development of a novel RT-LAMP assay for the detection of PPRV nucleic acid by targeting the N-protein gene. The RT-LAMP assay was evaluated using cell culture propagated PPRVs, field samples from clinically infected animals and samples from experimentally infected animals encompassing all four lineages (I-IV) of PPRV. The test displayed 100% concordance with RT-qPCR when considering an RT-qPCR cut-off value of CT >40. Further, the RT-LAMP assay was evaluated using experimental and outbreak samples without prior RNA extraction making it more time and cost-effective. This assay provides a solution for a pen-side, rapid and inexpensive PPR diagnostic for use in the field in nascent PPR eradication programme.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Marc F. Österdahl ◽  
Karla A. Lee ◽  
Mary Ni Lochlainn ◽  
Stuart Wilson ◽  
Sam Douthwaite ◽  
...  

Abstract Background A cost effective and efficient diagnostic tool for COVID-19 as near to the point of care (PoC) as possible would be a game changer in the current pandemic. We tested reverse transcription loop mediated isothermal amplification (RT-LAMP), a method which can produce results in under 30 min, alongside standard methods in a real-life clinical setting. Methods This prospective service improvement project piloted an RT-LAMP method on nasal and pharyngeal swabs on 21 residents of a high dependency care home, with two index COVID-19 cases, and compared it to multiplex tandem reverse transcription polymerase chain reaction (RT-PCR). We recorded vital signs of patients to correlate clinical and laboratory information and calculated the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of a single swab using RT-LAMP compared with the current standard, RT-PCR, as per Standards for Reporting Diagnostic Accuracy Studies (STARD) guidelines. Results The novel method accurately detected 8/10 RT-PCR positive cases and identified a further 3 positive cases. Eight further cases were negative using both methods. Using repeated RT-PCR as a “gold standard”, the sensitivity and specificity of a single novel test were 80 and 73% respectively. PPV was 73% and NPV was 83%. Incorporating retesting of low signal RT-LAMP positives improved the specificity to 100%. We also speculate that hypothermia may be a significant early clinical sign of COVID-19. Conclusions RT-LAMP testing for SARS-CoV-2 was found to be promising, fast and to work equivalently to RT-PCR methods. RT-LAMP has the potential to transform COVID-19 detection, bringing rapid and accurate testing to the PoC. RT-LAMP could be deployed in mobile community testing units, care homes and hospitals to detect disease early and prevent spread.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1950
Author(s):  
Woong Sik Jang ◽  
Da Hye Lim ◽  
YoungLan Choe ◽  
Hyunseul Jee ◽  
Kyung Chul Moon ◽  
...  

Malaria, caused by the parasite Plasmodium and transmitted by mosquitoes, is an epidemic that mainly occurs in tropical and subtropical regions. As treatments differ across species of malarial parasites, there is a need to develop rapid diagnostic methods to differentiate malarial species. Herein, we developed a multiplex malaria Pan/Pf/Pv/actin beta loop-mediated isothermal amplification (LAMP) to diagnose Plasmodium spp., P. falciparum, and P. vivax, as well as the internal control (IC), within 40 min. The detection limits of the multiplex malaria Pan/Pf/Pv/IC LAMP were 1 × 102, 1 × 102, 1 × 102, and 1 × 103 copies/µL for four vectors, including the 18S rRNA gene (Plasmodium spp.), lactate dehydrogenase gene (P. falciparum), 16S rRNA gene (P. vivax), and human actin beta gene (IC), respectively. The performance of the LAMP assay was compared and evaluated by evaluating 208 clinical samples (118 positive and 90 negative samples) with the commercial RealStar® Malaria S&T PCR Kit 1.0. The developed multiplex malaria Pan/Pf/Pv/IC LAMP assay showed comparable sensitivity (100%) and specificity (100%) with the commercial RealStar® Malaria S&T PCR Kit 1.0 (100%). These results suggest that the multiplex malaria Pan/Pf/Pv/IC LAMP could be used as a point-of-care molecular diagnostic test for malaria.


Plant Disease ◽  
2016 ◽  
Vol 100 (2) ◽  
pp. 260-268 ◽  
Author(s):  
Ruth L. Amata ◽  
Emmanuel Fernandez ◽  
Denis Filloux ◽  
Darren P. Martin ◽  
Philippe Rott ◽  
...  

Yellow leaf (YL) is a disease of sugarcane that is currently widespread throughout most American and Asian sugarcane-producing countries. However, its actual distribution in Africa remains largely unknown. A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to facilitate and improve the detection of Sugarcane yellow leaf virus (SCYLV), the causal agent of YL. The RT-LAMP assay was found to be comparable with or superior to conventional RT-polymerase chain reaction (PCR) for the detection of SCYLV genotypes CUB and BRA in infected sugarcane ‘C132-81’ and ‘SP71-6163’, respectively. Additionally, 68 sugarcane samples that tested negative by RT-PCR were found positive by RT-LAMP, whereas the RT-LAMP assay failed to detect SCYLV in only 5 samples that tested positive by RT-PCR. Combining RT-PCR and RT-LAMP data enabled the detection of SCYLV in 86 of 183 Kenyan sugarcane plants, indicating high SCYLV prevalence throughout the country (ranging from 36 to 64% in individual counties). Seminested PCR assays were developed that enabled the amplification of a fragment encompassing the capsid protein coding region gene and its flanking 5′ and 3′ genomic regions. Sequences of this fragment for four Kenyan SCYLV isolates indicated that they shared 99.2 to 99.6% pairwise identity with one another and clearly clustered phylogenetically with SCYLV-BRA genotype isolates. To our knowledge, this is the first report of SCYLV in Kenya.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Lena Mautner ◽  
Christin-Kirsty Baillie ◽  
Heike Marie Herold ◽  
Wolfram Volkwein ◽  
Patrick Guertler ◽  
...  

Abstract Background Fast, reliable and easy to handle methods are required to facilitate urgently needed point-of-care testing (POCT) in the current coronavirus pandemic. Life-threatening severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread all over the world, infecting more than 33,500,000 people and killing over 1 million of them as of October 2020. Infected individuals without any symptoms might still transfer the virus to others underlining the extraordinary transmissibility of this new coronavirus. In order to identify early infections effectively, treat patients on time and control disease spreading, rapid, accurate and onsite testing methods are urgently required. Results Here we report the development of a loop-mediated isothermal amplification (LAMP) based method to detect SARS-CoV-2 genes ORF8 and N directly from pharyngeal swab samples. The established reverse transcription LAMP (RT-LAMP) assay detects SARS-CoV-2 directly from pharyngeal swab samples without previous time-consuming and laborious RNA extraction. The assay is sensitive and highly specific for SARS-CoV-2 detection, showing no cross reactivity when tested on 20 other respiratory pathogens. The assay is 12 times faster and 10 times cheaper than routine reverse transcription real-time polymerase chain reaction, depending on the assay used. Conclusion The fast and easy to handle RT-LAMP assay amplifying specifically the genomic regions ORF8 and N of SARS-CoV-2 is ideally suited for POCT at e.g. railway stations, airports or hospitals. Given the current pandemic situation, rapid, cost efficient and onsite methods like the here presented RT-LAMP assay are urgently needed to contain the viral spread.


Author(s):  
Marc F Österdahl ◽  
Karla A Lee ◽  
Mary Ni Lochlainn ◽  
Stuart Wilson ◽  
Sam Douthwaite ◽  
...  

AbstractBackgroundThe need for a fast and reliable test for COVID-19 is paramount in managing the current pandemic. A cost effective and efficient diagnostic tool as near to the point of care (PoC) as possible would be a game changer in current testing. We tested reverse transcription loop mediated isothermal amplification (RT-LAMP), a method which can produce results in under 30 minutes, alongside standard methods in a real-life clinical setting.MethodsThis service improvement project piloted a research RT-LAMP method on nasal and pharyngeal swabs on 21 residents in a high dependency care home, with two index COVID-19 cases, and compared it to multiplex tandem reverse transcription polymerase chain reaction (RT-PCR). We calculated the sensitivity, specificity, positive and negative predictive values of a single RT-LAMP swab compared to RT-PCR, as per STARD guidelines. We also recorded vital signs of patients to correlate clinical and laboratory information.FindingsThe novel method accurately detected 8/10 PCR positive cases and identified a further 3 positive cases. Eight further cases were negative using both methods. Using repeated RT-PCR as a “gold standard”, the sensitivity and specificity of the novel test were 80% and 73% respectively. Positive predictive value (PPV) was 73% and negative predictive value (NPV) was 83%. We also observed hypothermia to be a significant early clinical sign in a number of COVID-19 patients in this setting.InterpretationRT-LAMP testing for SARS-CoV-2 was found to be promising, fast, easy to use and to work equivalently to RT-PCR methods. Definitive studies to evaluate this method in larger cohorts are underway. RT-LAMP has the potential to transform COVID-19 detection, bringing rapid and accurate testing to the point of care. This method could be deployed in mobile testing units in the community, care homes and hospitals to detect disease early and prevent spread.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Severino Jefferson Ribeiro da Silva ◽  
Keith Pardee ◽  
Udeni B. R. Balasuriya ◽  
Lindomar Pena

AbstractWe have previously developed and validated a one-step assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid detection of the Zika virus (ZIKV) from mosquito samples. Patient diagnosis of ZIKV is currently carried out in centralized laboratories using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), which, while the gold standard molecular method, has several drawbacks for use in remote and low-resource settings, such as high cost and the need of specialized equipment. Point-of-care (POC) diagnostic platforms have the potential to overcome these limitations, especially in low-resource countries where ZIKV is endemic. With this in mind, here we optimized and validated our RT-LAMP assay for rapid detection of ZIKV from patient samples. We found that the assay detected ZIKV from diverse sample types (serum, urine, saliva, and semen) in as little as 20 min, without RNA extraction. The RT-LAMP assay was highly specific and up to 100 times more sensitive than RT-qPCR. We then validated the assay using 100 patient serum samples collected from suspected cases of arbovirus infection in the state of Pernambuco, which was at the epicenter of the last Zika epidemic. Analysis of the results, in comparison to RT-qPCR, found that the ZIKV RT-LAMP assay provided sensitivity of 100%, specificity of 93.75%, and an overall accuracy of 95.00%. Taken together, the RT-LAMP assay provides a straightforward and inexpensive alternative for the diagnosis of ZIKV from patients and has the potential to increase diagnostic capacity in ZIKV-affected areas, particularly in low and middle-income countries.


Sign in / Sign up

Export Citation Format

Share Document