scholarly journals Investigation of Camphor Effects on Fusarium graminearum and F. culmorum at Different Molecular Levels

Pathogens ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 90
Author(s):  
Aylin Gazdağlı ◽  
Özlem Sefer ◽  
Emre Yörük ◽  
Gülin Varol ◽  
Tuğba Teker ◽  
...  

Fusarium graminearum and F. culmorum are phytopathogens, which cause destructive diseases in cereals. Epidemics of these phytopathogens are caused by mycotoxin contamination and the reduction of crop quality. In this study, the alteration due to in vitro camphor treatment on F. culmorum 9F and F. graminearum H11 isolates was investigated in terms of epigenetic, cellular, and transcription levels. Camphor with different concentrations (0.2, 0.4, 0.8, 1, 2, and 4 µg/µL) was applied to potato dextrose agar (PDA) growth media. The minimum inhibitory concentration (MIC) and the half maximal inhibitory concentration (IC50) were calculated as 2 and 1 µg/µL, respectively. hog1, mst20, CAT, POD, mgv1, stuA, and tri5 genes, which are related to various cellular processes and pathogenesis, were examined by qPCR assay. qPCR analysis showed that camphor treatment leads to the downregulation of tri5 expression but the upregulation of the remaining genes. Apoptosis and oxidative stress were confirmed via acridine orange/ethidium bromide (AO/EB) and dichlorofluorescin diacetate (DCF-DA) staining, respectively. Moreover, coupled restriction enzyme digestion-random amplification (CRED-RA) assay, used for DNA methylation analysis, was carried out to evaluate epigenetic alterations. The decrease in genomic template stability (GTS) values, which resulted due to the alterations in random amplified polymorphic DNA (RAPD) profiles caused by camphor treatment, were detected as 97.60% in F. culmorum 9F and 66.27% in F. graminearum H-11. The outer and inner methylated cytosine profiles are determined by CRED-RA assay as type I–IV epigenetic alterations. The outcomes indicated that camphor could lead to alterations at several molecular levels of F. graminearum and F. culmorum.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kheloud M. Alhamoudi ◽  
Tlili Barhoumi ◽  
Hamad Al-Eidi ◽  
Abdulaziz Asiri ◽  
Marwan Nashabat ◽  
...  

AbstractDCBLD2 encodes discodin, CUB and LCCL domain-containing protein 2, a type-I transmembrane receptor that is involved in intracellular receptor signalling pathways and the regulation of cell growth. In this report, we describe a 5-year-old female who presented severe clinical features, including restrictive cardiomyopathy, developmental delay, spasticity and dysmorphic features. Trio-whole-exome sequencing and segregation analysis were performed to identify the genetic cause of the disease within the family. A novel homozygous nonsense variant in the DCBLD2 gene (c.80G > A, p.W27*) was identified as the most likely cause of the patient’s phenotype. This nonsense variant falls in the extracellular N-terminus of DCBLD2 and thus might affect proper protein function of the transmembrane receptor. A number of in vitro investigations were performed on the proband’s skin fibroblasts compared to normal fibroblasts, which allowed a comprehensive assessment resulting in the functional characterization of the identified DCBLD2 nonsense variant in different cellular processes. Our data propose a significant association between the identified variant and the observed reduction in cell proliferation, cell cycle progression, intracellular ROS, and Ca2 + levels, which would likely explain the phenotypic presentation of the patient as associated with lethal restrictive cardiomyopathy.


2020 ◽  
Vol 8 (7) ◽  
pp. 1068
Author(s):  
Ju Bin Yoon ◽  
Sungmin Hwang ◽  
Se-Won Baek ◽  
Seungki Lee ◽  
Woo Young Bang ◽  
...  

Phenol and formalin are major water pollutants that are frequently discharged into the aquatic milieu. These chemicals can affect broad domains of life, including microorganisms. Aquatic pollutants, unlike terrestrial pollutants, are easily diluted in water environments and exist at a sub-inhibitory concentration (sub-IC), thus not directly inhibiting bacterial growth. However, they can modulate gene expression profiles. The sub-IC values of phenol and formalin were measured by minimal inhibitory concentration (MIC) assay to be 0.146% (1.3 mM) and 0.0039% (0.38 mM), respectively, in Edwardsiella piscicida CK108, a Gram-negative fish pathogen. We investigated the differentially expressed genes (DEG) by RNA-seq when the cells were exposed to the sub-ICs of phenol and formalin. DEG analyses revealed that genes involved in major virulence factors (type I fimbriae, flagella, type III and type VI secretion system) and various cellular pathways (energy production, amino acid synthesis, carbohydrate metabolism and two-component regulatory systems) were up- or downregulated by both chemicals. The genome-wide gene expression data corresponded to the results of a quantitative reverse complementary-PCR and motility assay. This study not only provides insight into how a representative fish pathogen, E. piscicida CK108, responds to the sub-ICs of phenol and formalin but also shows the importance of controlling chemical pollutants in aquatic environments.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1263
Author(s):  
Vincent Cura ◽  
Jean Cavarelli

PRMT2 belongs to the protein arginine methyltransferase (PRMT) family, which catalyzes the arginine methylation of target proteins. As a type I enzyme, PRMT2 produces asymmetric dimethyl arginine and has been shown to have weak methyltransferase activity on histone substrates in vitro, suggesting that its authentic substrates have not yet been found. PRMT2 contains the canonical PRMT methylation core and a unique Src homology 3 domain. Studies have demonstrated its clear implication in many different cellular processes. PRMT2 acts as a coactivator of several nuclear hormone receptors and is known to interact with a multitude of splicing-related proteins. Furthermore, PRMT2 is aberrantly expressed in several cancer types, including breast cancer and glioblastoma. These reports highlight the crucial role played by PRMT2 and the need for a better characterization of its activity and cellular functions.


2014 ◽  
Vol 40 (4) ◽  
pp. 358-364 ◽  
Author(s):  
Aveline Avozani ◽  
Erlei Melo Reis ◽  
Rosane Baldiga Tonin

In Brazil, Fusarium head blight (FHB) affecting wheat can cause up to 39.8% damage. Resistant cultivars are not available yet; thus, short-term disease control relies on the use of fungicides. The first step to improve control is to monitor fungal populations that are sensitivity to chemicals in order to achieve efficient FHB management. In vitro experiments were conducted to evaluate the inhibitory concentration (IC50) of fungicides for both mycelial growth and conidial germination of ten Fusarium graminearum isolates. The following demethylation inhibitor (DMI) fungicides were tested: metconazole, prothioconazole and tebuconazole. In addition, pyraclostrobin and trifloxystrobin were included, representing QoI fungicides, as well as three co-formulations containing metconazole + pyraclostrobin, prothioconazole + trifloxystrobin, and tebuconazole + trifloxystrobin. For mycelial growth, the overall mean IC50 of isolates was: metconazole 0.07, prothioconazole 0.1, and tebuconazole 0.19 mg/L. For the co-formulations, it was: prothioconazole + trifloxystrobin 0.08, tebuconazole + trifloxystrobin 0.12, and metconazole + pyraclostrobin 0.14 mg/L. Regarding spore germination inhibition, IC50 for prothioconazole + trifloxystrobin was 0.06, for tebuconazole + trifloxystrobin, 0.12 mg/L, for QoI alone pyraclostrobin, was 0.09, and for trifloxystrobin, 0.28 mg/L. There was a sensitivity shift among isolates and the highest fungitoxicity to F. graminearum was confirmed for prothioconazole, metconazole and tebuconazole .


2021 ◽  
Vol 65 (3) ◽  
pp. 9-14
Author(s):  
M. Harčárová ◽  
E. Čonková ◽  
P. Naď ◽  
P. Váczi ◽  
M. Proškovcová

Abstract In this study, the antifungal activity of cell-free supernatant (CFS) of Lactobacillus spp. (Lactobacillus plantarum CCM 1904; L81, Lactobacillus fermentum; 2I3, Lactobacilus reuteri; 2/6, L26;) and Bacillus spp. (Bacillus subtilis CCM 2794, Bacillus licheniformis CCM 2206) against two strains of Fusarium graminearum CCM F-683 and Fusarium graminearum CCM 8244 were investigated in vitro. All tested CFS of Lactobacillus spp. were able to inhibit the growth of both strains of Fusarium graminearum. The highest inhibitory effect (IE) (56.5 %) against F. graminearum CCM F-683 was observed for CFS Lactobacillus fermentum (2I3) at the minimum inhibitory concentration (MIC) (2.25 ± 0.56 mg.ml–1). CFS of Lactobacillus reuteri (2/6) showed the best IE (40.0 %) against F. graminearum CCM 8244 (2/6) at the MIC 1.25 mg.ml–1. However, no inhibitory effect of Bacillus subtilis and Bacillus licheniformis CFS against both strains of F. graminearum were observed, even at the highest tested concentration of 5.0 mg.ml–1.


Author(s):  
Arthur J. Wasserman ◽  
Kathy C. Kloos ◽  
David E. Birk

Type I collagen is the predominant collagen in the cornea with type V collagen being a quantitatively minor component. However, the content of type V collagen (10-20%) in the cornea is high when compared to other tissues containing predominantly type I collagen. The corneal stroma has a homogeneous distribution of these two collagens, however, immunochemical localization of type V collagen requires the disruption of type I collagen structure. This indicates that these collagens may be arranged as heterpolymeric fibrils. This arrangement may be responsible for the control of fibril diameter necessary for corneal transparency. The purpose of this work is to study the in vitro assembly of collagen type V and to determine whether the interactions of these collagens influence fibril morphology.


1985 ◽  
Vol 54 (02) ◽  
pp. 413-414 ◽  
Author(s):  
Margarethe Geiger ◽  
Bernd R Binder

SummaryWe have demonstrated previously that fibrin enhanced plasmin formation by the vascular plasminogen activator was significantly impaired, when components isolated from the plasma of three uncontrolled diabetic patients (type I) were used to study plasminogen activation in vitro. In the present study it can be demonstrated that functional properties of the vascular plasminogen activators as well as of the plasminogens from the same three diabetic patients are significantly improved after normalization of blood sugar levels and improvement of HbAlc values. Most pronounced the Km of diabetic vascular plasminogen activator in the presence of fibrin returned to normal values, and for diabetic plasminogen the prolonged lag period until maximal plasmin formation occurred was shortened to almost control values. From these data we conclude that the observed abnormalities of in vitro fibrinolysis are not primarily associated with the diabetic disease, but might be secondary to metabolic disorders caused by diabetes.


2019 ◽  
Author(s):  
S Ehrlich ◽  
K Wild ◽  
M Smits ◽  
K Zoldan ◽  
M Hofmann ◽  
...  

Diabetes ◽  
1989 ◽  
Vol 38 (3) ◽  
pp. 310-315 ◽  
Author(s):  
C. Giordano ◽  
F. Panto ◽  
C. Caruso ◽  
M. A. Modica ◽  
A. M. Zambito ◽  
...  

2020 ◽  
pp. 40-50
Author(s):  
A. Nikitina

Analysis of literature data presented in search engines — Elibrary, PubMed, Cochrane — concerning the risk of developing type I allergic reactions in patients with blood diseases is presented. It is shown that the most common cause of type I allergic reactions is drugs included in the treatment regimens of this category of patients. The article presents statistics on the increase in the number of drug allergies leading to cases of anaphylactic shock in patients with blood diseases. Modern methods for the diagnosis of type I allergic reactions in vivo and in vitro are considered.


Sign in / Sign up

Export Citation Format

Share Document