scholarly journals Investigation of Commiphora myrrha (Nees) Engl. Oil and Its Main Components for Antiviral Activity

2021 ◽  
Vol 14 (3) ◽  
pp. 243
Author(s):  
Valentina Noemi Madia ◽  
Marta De Angelis ◽  
Daniela De Vita ◽  
Antonella Messore ◽  
Alessandro De Leo ◽  
...  

The resinous exudate produced by Commiphora myrrha (Nees) Engl. is commonly known as true myrrh and has been used since antiquity for several medicinal applications. Hundreds of metabolites have been identified in the volatile component of myrrh so far, mainly sesquiterpenes. Although several efforts have been devoted to identifying these sesquiterpenes, the phytochemical analyses have been performed by gas-chromatography/mass spectrometry (GC–MS) where the high temperature employed can promote degradation of the components. In this work, we report the extraction of C. myrrha by supercritical CO2, an extraction method known for the mild extraction conditions that allow avoiding undesired chemical reactions during the process. In addition, the analyses of myrrh oil and of its metabolites were performed by HPLC and GC–MS. Moreover, we evaluated the antiviral activity against influenza A virus of the myrrh extracts, that was possible to appreciate after the addition of vitamin E acetate (α-tocopheryl acetate) to the extract. Further, the single main bioactive components of the oil of C. myrrha commercially available were tested. Interestingly, we found that both furanodienone and curzerene affect viral replication by acting on different steps of the virus life cycle.

Toxics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Bryan Duffy ◽  
Lingyun Li ◽  
Shijun Lu ◽  
Lorie Durocher ◽  
Mark Dittmar ◽  
...  

Beginning in June of 2019, there was a marked increase in reported cases of serious pulmonary injury associated with vaping. The condition, referred to as e-cigarette or vaping product use-associated lung injury (EVALI), does not appear to involve an infectious agent; rather, a chemical adulterant or contaminant in vaping fluids is suspected. In August of 2019, the Wadsworth Center began receiving vaporizer cartridges recovered from patients with EVALI for analysis. Having no a priori information of what might be in the cartridges, we employed untargeted analyses using gas chromatography-mass spectrometry and high-resolution mass spectrometry to identify components of concern. Additionally, we employed targeted analyses used for New York medical marijuana products. Here, we report on the analyses of 38 samples from the first 10 New York cases of EVALI for which we obtained cartridges. The illicit fluids had relatively low cannabinoid content, sometimes with unusual Δ9-/Δ8-tetrahydrocannabinol ratios, sometimes containing pesticides and many containing diluents. A notable diluent was α-tocopheryl acetate (vitamin E acetate; VEA), which was found in 64% of the cannabinoid-containing fluids. To investigate potential sources of the VEA, we analyzed six commercial cannabis-oil diluents/thickeners. Three were found to be >95% VEA, two were found to be primarily squalane, and one was primarily α-bisabolol. The cause(s) of EVALI is unknown. VEA and squalane are components of some personal care products; however, there is growing concern that vaping large amounts of these compounds is not safe.


2019 ◽  
Vol 30 (3) ◽  
pp. 16-22

World Health Organization (WHO) estimated that 80% of the population of developing countries use traditional medicines, mostly natural plant products, for their primary health care needs. In the past few decades, the medicinal value of plants has been assumed more important dimension owing largely to the discovery that extracts from plants contain not only primary metabolites but also a diverse array of secondary metabolites with antioxidant potential. Medicinal plants are potential sources of natural compounds with biological activities and therefore attract the attention of researchers worldwide. Antioxidants are vital substances which possess ability to protect the body from damage due to free radical-induced oxidative stress. The purpose of current study was to determine the antioxidant activities and bioactive components of Foeniculum vulgare (fennel) (Samonsabar) seeds by using UV Visible Spectrophotometer (UV-Vis) and Gas Chromatography-Mass Spectrometry (GC-MS). Aqueous extract of fennel seeds showed more antioxidant activity (IC50: 0.28 ug/ml) than ethanolic extract (IC50: 0.83 ug/ml) and comparable to standard antioxidant, ascorbic acid (IC50: 0.59 ug/ml). GC-MS analysis was fruitful in identification of compounds based on peak area, retention time, molecular formula, molecular weight, MS Fragmentions and pharmacological actions. Ten bioactive phytochemical compounds from aqueous extracts and 11 from ethanolic extract of fennel seeds were identified. These findings indicated that fennel seeds are potential to provide preventive properties against oxidative damage. These results will give scientific information for quality control of indigenous drug to herbal medicine users and local practitioners using fennel for different types of ailments


2011 ◽  
Vol 8 (4) ◽  
pp. 375-380 ◽  
Author(s):  
Oleg V. Ardashov ◽  
Vladimir V. Zarubaev ◽  
Anna A. Shtro ◽  
Dina V. Korchagina ◽  
Konstantin P. Volcho ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu-Jen Chang ◽  
Cheng-Yun Yeh ◽  
Ju-Chien Cheng ◽  
Yu-Qi Huang ◽  
Kai-Cheng Hsu ◽  
...  

AbstractEradicating influenza A virus (IAV) is difficult, due to its genetic drift and reassortment ability. As the infectious cycle is initiated by the influenza glycoprotein, hemagglutinin (HA), which mediates the binding of virions to terminal sialic acids moieties, HA is a tempting target of anti-influenza inhibitors. However, the complexity of the HA structure has prevented delineation of the structural characterization of the HA protein–ligand complex. Our computational strategy efficiently analyzed > 200,000 records of compounds held in the United States National Cancer Institute (NCI) database and identified potential HA inhibitors, by modeling the sialic acid (SA) receptor binding site (RBS) for the HA structure. Our modeling revealed that compound NSC85561 showed significant antiviral activity against the IAV H1N1 strain with EC50 values ranging from 2.31 to 2.53 µM and negligible cytotoxicity (CC50 > 700 µM). Using the NSC85561 compound as the template to generate 12 derivatives, robust bioassay results revealed the strongest antiviral efficacies with NSC47715 and NSC7223. Virtual screening clearly identified three SA receptor binding site inhibitors that were successfully validated in experimental data. Thus, our computational strategy has identified SA receptor binding site inhibitors against HA that show IAV-associated antiviral activity.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lianci Peng ◽  
Wenjuan Du ◽  
Melanie D. Balhuizen ◽  
Henk P. Haagsman ◽  
Cornelis A. M. de Haan ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Selina Traxler ◽  
Gina Barkowsky ◽  
Radost Saß ◽  
Ann-Christin Klemenz ◽  
Nadja Patenge ◽  
...  

AbstractInfluenza A is a serious pathogen itself, but often leads to dangerous co-infections in combination with bacterial species such as Streptococcus pyogenes. In comparison to classical biochemical methods, analysis of volatile organic compounds (VOCs) in headspace above cultures can enable destruction free monitoring of metabolic processes in vitro. Thus, volatile biomarkers emitted from biological cell cultures and pathogens could serve for monitoring of infection processes in vitro. In this study we analysed VOCs from headspace above (co)-infected human cells by using a customized sampling system. For investigating the influenza A mono-infection and the viral-bacterial co-infection in vitro, we analysed VOCs from Detroit cells inoculated with influenza A virus and S. pyogenes by means of needle-trap micro-extraction (NTME) and gas chromatography mass spectrometry (GC-MS). Besides the determination of microbiological data such as cell count, cytokines, virus load and bacterial load, emissions from cell medium, uninfected cells and bacteria mono-infected cells were analysed. Significant differences in emitted VOC concentrations were identified between non-infected and infected cells. After inoculation with S. pyogenes, bacterial infection was mirrored by increased emissions of acetaldehyde and propanal. N-propyl acetate was linked to viral infection. Non-destructive monitoring of infections by means of VOC analysis may open a new window for infection research and clinical applications. VOC analysis could enable early recognition of pathogen presence and in-depth understanding of their etiopathology.


2011 ◽  
Vol 230-232 ◽  
pp. 852-856
Author(s):  
Qing Li ◽  
Dang Quan Zhang ◽  
Qi Mei Liu ◽  
Kuan Peng

The chemical components of helium volatiles from the fresh branches of Cinnamomum camphora were studied by TD-GC/MS. The analytical result by 60°С-based TD-GC/MS showed that 55 peaks were obtained from the helium volatiles from the fresh branches of Cinnamomum camphora and 53 chemical compounds were identified. The results showed that the main components were as: Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (1R)- (15.4328%), 1,3-Benzodioxole, 5-(2-propenyl)- (14.881%), Tricyclo[2.2.1.0(2,6)]heptane, 1,7-dimethyl-7-(4-methyl-3-pentenyl)-, (-)- (12.694%), p-menth-1-en-8-ol (9.832%), Bicyclo[2.2.1]heptane, 2-methyl-3-methylene-2-(4-methyl-3- pentenyl)-, (1S-exo)- (6.143%), 1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl- (5.365%), Bicyclo[3.1.1] hept-2-ene, 2,6-dimethyl-6-(4-methyl-3-pentenyl)- (4.527%), Naphthalene, 1,2,3,5,6,8a- hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-cis)- (4.129%), 3-Cyclohexen-1-ol, 4-methyl-1- (1-methylethyl)- (2.965%), Borneol (2.627%), Bicyclo[2.2.1]heptan-2-ol, 1,7,7-trimethyl-, acetate, (1S-endo)- (2.586%), Copaene (2.534%), 1,6,10-Dodecatriene, 7,11-dimethyl-3-methylene-, (Z)- (1.612%), (-)-Isosativene (1.121%), etc. The analytical result suggested that the helium volatiles from the fresh branches of Cinnamomum camphora could be used as industrial materials of biomedicines and spicery.


2014 ◽  
Vol 5 ◽  
Author(s):  
Emanuel Haasbach ◽  
Carmen Hartmayer ◽  
Alice Hettler ◽  
Alicja Sarnecka ◽  
Ulrich Wulle ◽  
...  

Sociobiology ◽  
2018 ◽  
Vol 65 (2) ◽  
pp. 170 ◽  
Author(s):  
Deqiang Qin ◽  
Rilin Huang ◽  
Zihao Li ◽  
Shiying Wang ◽  
Dongmei Cheng ◽  
...  

Volatile compounds from mashed (fresh, fallen, and dried) leaves ofMichelia alba were collected via solid-phase microextraction and werethen identified via gas chromatography-mass spectrometry. The resultsshowed that linalool was the dominant component in different leaves,together with caryophyllene, β-elemene, and selinene, the contents ofwhich vary across the samples. The fumigation bioassay results showedthat the volatiles from M. alba leaves exhibited insecticidal activity againstred imported fire ant workers, and the mortality of workers could reachup to 100% after the fallen leaves were treated for 16 h. Mashed freshleaves could effectively reduce the aggregation and drinking ability ofworkers. The volatile substances released from the mashed leaves mightkill the ants, or affect their behavior and weaken the activity by interferingtransmit information between ants. A comprehensive consideration ofthe economic and ecological value of M. alba shows that fallen leavesmight be a good resource to control red imported fire ant.


Sign in / Sign up

Export Citation Format

Share Document