scholarly journals Volatile scents of influenza A and S. pyogenes (co-)infected cells

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Selina Traxler ◽  
Gina Barkowsky ◽  
Radost Saß ◽  
Ann-Christin Klemenz ◽  
Nadja Patenge ◽  
...  

AbstractInfluenza A is a serious pathogen itself, but often leads to dangerous co-infections in combination with bacterial species such as Streptococcus pyogenes. In comparison to classical biochemical methods, analysis of volatile organic compounds (VOCs) in headspace above cultures can enable destruction free monitoring of metabolic processes in vitro. Thus, volatile biomarkers emitted from biological cell cultures and pathogens could serve for monitoring of infection processes in vitro. In this study we analysed VOCs from headspace above (co)-infected human cells by using a customized sampling system. For investigating the influenza A mono-infection and the viral-bacterial co-infection in vitro, we analysed VOCs from Detroit cells inoculated with influenza A virus and S. pyogenes by means of needle-trap micro-extraction (NTME) and gas chromatography mass spectrometry (GC-MS). Besides the determination of microbiological data such as cell count, cytokines, virus load and bacterial load, emissions from cell medium, uninfected cells and bacteria mono-infected cells were analysed. Significant differences in emitted VOC concentrations were identified between non-infected and infected cells. After inoculation with S. pyogenes, bacterial infection was mirrored by increased emissions of acetaldehyde and propanal. N-propyl acetate was linked to viral infection. Non-destructive monitoring of infections by means of VOC analysis may open a new window for infection research and clinical applications. VOC analysis could enable early recognition of pathogen presence and in-depth understanding of their etiopathology.

Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1152 ◽  
Author(s):  
Augustino Alfred Chengula ◽  
Stephen Mutoloki ◽  
Øystein Evensen ◽  
Hetron Mweemba Munang’andu

Tilapia lake virus (TiLV) is a negative-sense single-stranded RNA (-ssRNA) icosahedral virus classified to be the only member in the family Amnoonviridae. Although TiLV segment-1 shares homology with the influenza C virus PB1 and has four conserved motifs similar to influenza A, B, and C polymerases, it is unknown whether there are other properties shared between TiLV and orthomyxovirus. In the present study, we wanted to determine whether TiLV agglutinated avian and piscine erythrocytes, and whether its replication was inhibited by lysosomotropic agents, such as ammonium chloride (NH4Cl), as seen for orthomyxoviruses. Our findings showed that influenza virus strain A/Puerto Rico/8 (PR8) was able to hemagglutinate turkey (Meleagris gallopavo), Atlantic salmon (Salmo salar L), and Nile tilapia (Oreochromis niloticus) red blood cells (RBCs), while infectious salmon anemia virus (ISAV) only agglutinated Atlantic salmon, but not turkey or tilapia, RBCs. In contrast to PR8 and ISAV, TiLV did not agglutinate turkey, Atlantic salmon, or tilapia RBCs. qRT-PCR analysis showed that 30 mM NH4Cl, a basic lysosomotropic agent, neither inhibited nor enhanced TiLV replication in E-11 cells. There was no difference in viral quantities in the infected cells with or without NH4Cl treatment during virus adsorption or at 1, 2, and 3 h post-infection. Given that hemagglutinin proteins that bind RBCs also serve as ligands that bind host cells during virus entry leading to endocytosis in orthomyxoviruses, the data presented here suggest that TiLV may use mechanisms that are different from orthomyxoviruses for entry and replication in host cells. Therefore, future studies should seek to elucidate the mechanisms used by TiLV for entry into host cells and to determine its mode of replication in infected cells.


2019 ◽  
Vol 47 (13) ◽  
pp. 7003-7017 ◽  
Author(s):  
Lisa Marie Simon ◽  
Edoardo Morandi ◽  
Anna Luganini ◽  
Giorgio Gribaudo ◽  
Luis Martinez-Sobrido ◽  
...  

AbstractThe influenza A virus (IAV) is a continuous health threat to humans as well as animals due to its recurring epidemics and pandemics. The IAV genome is segmented and the eight negative-sense viral RNAs (vRNAs) are transcribed into positive sense complementary RNAs (cRNAs) and viral messenger RNAs (mRNAs) inside infected host cells. A role for the secondary structure of IAV mRNAs has been hypothesized and debated for many years, but knowledge on the structure mRNAs adopt in vivo is currently missing. Here we solve, for the first time, the in vivo secondary structure of IAV mRNAs in living infected cells. We demonstrate that, compared to the in vitro refolded structure, in vivo IAV mRNAs are less structured but exhibit specific locally stable elements. Moreover, we show that the targeted disruption of these high-confidence structured domains results in an extraordinary attenuation of IAV replicative capacity. Collectively, our data provide the first comprehensive map of the in vivo structural landscape of IAV mRNAs, hence providing the means for the development of new RNA-targeted antivirals.


2019 ◽  
Vol 216 (2) ◽  
pp. 304-316 ◽  
Author(s):  
Ivan Kosik ◽  
Davide Angeletti ◽  
James S. Gibbs ◽  
Matthew Angel ◽  
Kazuyo Takeda ◽  
...  

Broadly neutralizing antibodies (Abs) that bind the influenza virus hemagglutinin (HA) stem may enable universal influenza vaccination. Here, we show that anti-stem Abs sterically inhibit viral neuraminidase (NA) activity against large substrates, with activity inversely proportional to the length of the fibrous NA stalk that supports the enzymatic domain. By modulating NA stalk length in recombinant IAVs, we show that anti-stem Abs inhibit virus release from infected cells by blocking NA, accounting for their in vitro neutralization activity. NA inhibition contributes to anti-stem Ab protection in influenza-infected mice, likely due at least in part to NA-mediated inhibition of FcγR-dependent activation of innate immune cells by Ab bound to virions. Food and Drug Administration–approved NA inhibitors enhance anti-stem–based Fc-dependent immune cell activation, raising the possibility of therapeutic synergy between NA inhibitors and anti-stem mAb treatment in humans.


2013 ◽  
Vol 20 (8) ◽  
pp. 1333-1337 ◽  
Author(s):  
Rogier Bodewes ◽  
Martina M. Geelhoed-Mieras ◽  
Jens Wrammert ◽  
Rafi Ahmed ◽  
Patrick C. Wilson ◽  
...  

ABSTRACTInfluenza A viruses cause annual epidemics and occasionally pandemics. Antibodies directed to the conserved viral nucleoprotein (NP) may play a role in immunity against various influenza A virus subtypes. Here, we assessed the immunological significance of a human monoclonal antibody directed to NPin vitro. This antibody bound to virus-infected cells but did not display virus-neutralizing activity, complement-dependent cell cytotoxicity, or opsonization of viral antigen for improved antigen presentation to CD8+T cells by dendritic cells.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1721
Author(s):  
Marta De Angelis ◽  
David Della-Morte ◽  
Gabriele Buttinelli ◽  
Angela Di Martino ◽  
Francesca Pacifici ◽  
...  

Polyphenols have been widely studied for their antiviral effect against respiratory virus infections. Among these, resveratrol (RV) has been demonstrated to inhibit influenza virus replication and more recently, it has been tested together with pterostilbene against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the present work, we evaluated the antiviral activity of polydatin, an RV precursor, and a mixture of polyphenols and other micronutrients, named A5+, against influenza virus and SARS-CoV-2 infections. To this end, we infected Vero E6 cells and analyzed the replication of both respiratory viruses in terms of viral proteins synthesis and viral titration. We demonstrated that A5+ showed a higher efficacy in inhibiting both influenza virus and SARS-CoV-2 infections compared to polydatin treatment alone. Indeed, post infection treatment significantly decreased viral proteins expression and viral release, probably by interfering with any step of virus replicative cycle. Intriguingly, A5+ treatment strongly reduced IL-6 cytokine production in influenza virus-infected cells, suggesting its potential anti-inflammatory properties during the infection. Overall, these results demonstrate the synergic and innovative antiviral efficacy of A5+ mixture, although further studies are needed to clarify the mechanisms underlying its inhibitory effect.


1998 ◽  
Vol 72 (8) ◽  
pp. 6283-6290 ◽  
Author(s):  
Ervin Fodor ◽  
Peter Palese ◽  
George G. Brownlee ◽  
Adolfo García-Sastre

ABSTRACT We have engineered influenza A/WSN/33 viruses which have viral RNA (vRNA) segments with altered base pairs in the conserved double-stranded region of their vRNA promoters. The mutations were introduced into the segment coding for the neuraminidase (NA) by using a reverse genetics system. Two of the rescued viruses which share a C-G→A-U double mutation at positions 11 and 12′ at the 3′ and 5′ ends of the NA-specific vRNA, respectively, showed approximately a 10-fold reduction of NA levels. The mutations did not dramatically affect the NA-specific vRNA levels found in virions or the NA-specific vRNA and cRNA levels in infected cells. In contrast, there was a significant decrease in the steady-state levels of NA-specific mRNAs in infected cells. Transcription studies in vitro with ribonucleoprotein complexes isolated from the two transfectant viruses indicated that transcription initiation of the NA-specific segment was not affected. However, the majority of NA-specific transcripts lacked poly(A) tails, suggesting that mutations in the double-stranded region of the influenza virus vRNA promoter can attenuate polyadenylation of mRNA molecules. This is the first time that a promoter mutation in an engineered influenza virus has shown a differential effect on influenza virus RNA transcription and replication.


Acta Naturae ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 20-30 ◽  
Author(s):  
E. P. Goncharova ◽  
Y. A. Kostyro ◽  
A. V. Ivanov ◽  
M. A. Zenkova

The development of novel drugs against the influenza virus with high efficiency and low toxicity is an urgent and important task. Previous reports have demonstrated that compounds based on sulfo derivatives of oligo- and polysaccharides possess high antiviral activity. In this study, we have examined the ability of a novel sulfonated derivative of -cyclodextrin (KS-6469) to inhibit the influenza virus A/WSN/33 (H1N1) infection in vitro and in vivo. The antiviral potential of KS-6469 against the influenza virus was evaluated in Madin-Darby Canine Kidney epithelial cells treated with serially diluted KS-6469. We found out that KS-6469 completely inhibited viral reproduction after treatment of the infected cells with the compound for 48 h. Our data show that double intranasal treatment of mice with KS-6469 fully protected the animals from a lethal infection and significantly decreased the viral titers in the lungs of the infected animals. Thus, the novel sulfonated -cyclodextrin derivative KS-6469 is a promising candidate for the development of antiviral drugs for preventing and treating the influenza infection.


1996 ◽  
Vol 7 (6) ◽  
pp. 346-352 ◽  
Author(s):  
S. Shigeta ◽  
S. Mori ◽  
J. Watanabe ◽  
T. Yamase ◽  
R. F. Schinazi

Sixty polyoxometalates were examined for anti-influenza A virus (FluV-A) activity in vitro. Two of the most potent and least cytotoxic compounds, PM-504 K9H5(Ge2Ti6W18O77)16H2O] and PM-523 (iPrNH3)6H [PTi2W10O38(O2)9H2O2] were selected for further studies. Examination of the antiviral effects of PM-504 and PM-523 against other human ortho- and paramyxoviruses revealed that both compounds had broad spectrum antimyxovirus activities. From a time of addition study and FACS analysis for influenza A virus infected cells, the compounds were found not to inhibit binding of virus to MDCK cells. However, these compounds inhibited haemolysis of chicken erythrocytes by virus and also inhibited fluorescence dequenching of octadecylrhodamine B-labelled virus after binding to cells. This indicates that these polyoxometalates inhibited fusion of the virus envelope to the cellular membrane.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 698
Author(s):  
Aitor Nogales ◽  
Michael Schotsaert ◽  
Raveen Rathnasinghe ◽  
Marta L. DeDiego ◽  
Adolfo García-Sastre ◽  
...  

The influenza A virus (IAV) is able to infect multiple mammalian and avian species, and in humans IAV is responsible for annual seasonal epidemics and occasional pandemics of respiratory disease with significant health and economic impacts. Studying IAV involves laborious secondary methodologies to identify infected cells. Therefore, to circumvent this requirement, in recent years, multiple replication-competent infectious IAV expressing traceable reporter genes have been developed. These IAVs have been very useful for in vitro and/or in vivo studies of viral replication, identification of neutralizing antibodies or antivirals, and in studies to evaluate vaccine efficacy, among others. In this report, we describe, for the first time, the generation and characterization of two replication-competent influenza A/Puerto Rico/8/1934 H1N1 (PR8) viruses where the viral non-structural protein 1 (NS1) was substituted by the monomeric (m)Cherry fluorescent or the NanoLuc luciferase (Nluc) proteins. The ΔNS1 mCherry was able to replicate in cultured cells and in Signal Transducer and Activator of Transcription 1 (STAT1) deficient mice, although at a lower extent than a wild-type (WT) PR8 virus expressing the same mCherry fluorescent protein (WT mCherry). Notably, expression of either reporter gene (mCherry or Nluc) was detected in infected cells by fluorescent microscopy or luciferase plate readers, respectively. ΔNS1 IAV expressing reporter genes provide a novel approach to better understand the biology and pathogenesis of IAV, and represent an excellent tool to develop new therapeutic approaches against IAV infections.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 787
Author(s):  
Lorenzo Nissen ◽  
Flavia Casciano ◽  
Elena Chiarello ◽  
Mattia Di Nunzio ◽  
Alessandra Bordoni ◽  
...  

The use of olive pomace could represent an innovative and low-cost strategy to formulate healthier and value-added foods, and bakery products are good candidates for enrichment. In this work, we explored the prebiotic potential of bread enriched with Polyphenol Rich Fiber (PRF), a defatted olive pomace byproduct previously studied in the European Project H2020 EcoProlive. To this aim, after in vitro digestion, the PRF-enriched bread, its standard control, and fructo-oligosaccharides (FOS) underwent distal colonic fermentation using the in vitro colon model MICODE (multi-unit colon gut model). Sampling was done prior, over and after 24 h of fermentation, then metabolomic analysis by Solid Phase Micro Extraction Gas Chromatography Mass Spectrometry (SPME GCMS), 16S-rDNA genomic sequencing of colonic microbiota by MiSeq, and absolute quantification of main bacterial species by qPCR were performed. The results indicated that PRF-enriched bread generated positive effects on the host gut model: (i) surge in eubiosis; (ii) increased abundance of beneficial bacterial groups, such as Bifidobacteriaceae and Lactobacillales; (iii) production of certain bioactive metabolites, such as low organic fatty acids; (iv) reduction in detrimental compounds, such as skatole. Our study not only evidenced the prebiotic role of PRF-enriched bread, thereby paving the road for further use of olive by-products, but also highlighted the potential of the in vitro gut model MICODE in the critical evaluation of functionality of food prototypes as modulators of the gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document