scholarly journals Some Candidate Drugs for Pharmacotherapy of Alzheimer’s Disease

2021 ◽  
Vol 14 (5) ◽  
pp. 458
Author(s):  
Barbara Miziak ◽  
Barbara Błaszczyk ◽  
Stanisław J. Czuczwar

Alzheimer’s disease (AD; progressive neurodegenerative disorder) is associated with cognitive and functional impairment with accompanying neuropsychiatric symptoms. The available pharmacological treatment is of a symptomatic nature and, as such, it does not modify the cause of AD. The currently used drugs to enhance cognition include an N-methyl-d-aspartate receptor antagonist (memantine) and cholinesterase inhibitors. The PUBMED, Medical Subject Heading and Clinical Trials databases were used for searching relevant data. Novel treatments are focused on already approved drugs for other conditions and also searching for innovative drugs encompassing investigational compounds. Among the approved drugs, we investigated, are intranasal insulin (and other antidiabetic drugs: liraglitude, pioglitazone and metformin), bexarotene (an anti-cancer drug and a retinoid X receptor agonist) or antidepressant drugs (citalopram, escitalopram, sertraline, mirtazapine). The latter, especially when combined with antipsychotics (for instance quetiapine or risperidone), were shown to reduce neuropsychiatric symptoms in AD patients. The former enhanced cognition. Procognitive effects may be also expected with dietary antioxidative and anti-inflammatory supplements—curcumin, myricetin, and resveratrol. Considering a close relationship between brain ischemia and AD, they may also reduce post-brain ischemia neurodegeneration. An investigational compound, CN-105 (a lipoprotein E agonist), has a very good profile in AD preclinical studies, and its clinical trial for postoperative dementia is starting soon.

2020 ◽  
Vol 13 (4) ◽  
pp. 273-294 ◽  
Author(s):  
Elahe Zarini-Gakiye ◽  
Javad Amini ◽  
Nima Sanadgol ◽  
Gholamhassan Vaezi ◽  
Kazem Parivar

Background: Alzheimer’s disease (AD) is the most frequent subtype of incurable neurodegenerative dementias and its etiopathology is still not clearly elucidated. Objective: Outline the ongoing clinical trials (CTs) in the field of AD, in order to find novel master regulators. Methods: We strictly reviewed all scientific reports from Clinicaltrials.gov and PubMed databases from January 2010 to January 2019. The search terms were “Alzheimer's disease” or “dementia” and “medicine” or “drug” or “treatment” and “clinical trials” and “interventions”. Manuscripts that met the objective of this study were included for further evaluations. Results: Drug candidates have been categorized into two main groups including antibodies, peptides or hormones (such as Ponezumab, Interferon β-1a, Solanezumab, Filgrastim, Levemir, Apidra, and Estrogen), and naturally-derived ingredients or small molecules (such as Paracetamol, Ginkgo, Escitalopram, Simvastatin, Cilostazo, and Ritalin-SR). The majority of natural candidates acted as anti-inflammatory or/and anti-oxidant and antibodies exert their actions via increasing amyloid-beta (Aβ) clearance or decreasing Tau aggregation. Among small molecules, most of them that are present in the last phases act as specific antagonists (Suvorexant, Idalopirdine, Intepirdine, Trazodone, Carvedilol, and Risperidone) or agonists (Dextromethorphan, Resveratrol, Brexpiprazole) and frequently ameliorate cognitive dysfunctions. Conclusion: The presences of a small number of candidates in the last phase suggest that a large number of candidates have had an undesirable side effect or were unable to pass essential eligibility for future phases. Among successful treatment approaches, clearance of Aβ, recovery of cognitive deficits, and control of acute neuroinflammation are widely chosen. It is predicted that some FDA-approved drugs, such as Paracetamol, Risperidone, Escitalopram, Simvastatin, Cilostazoand, and Ritalin-SR, could also be used in off-label ways for AD. This review improves our ability to recognize novel treatments for AD and suggests approaches for the clinical trial design for this devastating disease in the near future.


Author(s):  
Punabaka Jyothi ◽  
Kuna Yellamma

Objective: Alzheimer’s disease (AD), a progressive neurodegenerative disorder with many cognitive and neuropsychiatric symptoms, is biochemically characterized by a significant decrease in the brain neurotransmitter Acetylcholine (ACh).Methods: In the present insilico study, six plant bioactive compounds namely Harmol, Vasicine, Harmaline, Harmine, Harmane and Harmalol (from P. Nigellastrum Bunge) were analyzed for their inhibitory role on AChE (Acetylcholinesterase) and BChE (Butyrylcholinesterase) activity by applying the molecular docking studies. Other parameters viz. determination of molecular interaction-based binding affinity values, protein-ligand interactions, Lipinski rule of five, functional properties and biological activities for the above compounds were also calculated by employing the appropriate bioinformatics tools.Results: The results of docking analysis clearly showed that Harmalol has highest binding affinity with AChE (-8.6 kcal/mole) and BChE (-8.0 kcal/mole) but it does not qualified the enzyme inhibitory activity, since it was exerted, and also has least percentage activity on AD and neurodegenerative disease. Whereas, the Harmine has been second qualified binding affinity (-8.4 kcal/mol) and first in other parameters when compared with Harmalol.Conclusion: Based on docking results and other parameters conducted, we are concluding that Harmine is the best compound for further studies to treat AD.Keywords: Alzheimer's disease (AD), Acetylcholinesterase, Butyrylcholinesterase, Lead Molecules


2019 ◽  
Vol 16 (9) ◽  
pp. 772-800 ◽  
Author(s):  
Eva Mezeiova ◽  
Katarina Chalupova ◽  
Eugenie Nepovimova ◽  
Lukas Gorecki ◽  
Lukas Prchal ◽  
...  

: Alzheimer's Disease (AD) is a neurodegenerative disorder with an increasing impact on society. Because currently available therapy has only a short-term effect, a huge number of novel compounds are developed every year exploiting knowledge of the various aspects of AD pathophysiology. To better address the pathological complexity of AD, one of the most extensively pursued strategies by medicinal chemists is based on Multi-target-directed Ligands (MTDLs). Donepezil is one of the currently approved drugs for AD therapy acting as an acetylcholinesterase inhibitor. In this review, we have made an extensive literature survey focusing on donepezil-derived MTDL hybrids primarily targeting on different levels cholinesterases and amyloid beta (Aβ) peptide. The targeting includes direct interaction of the compounds with Aβ, AChE-induced Aβ aggregation, inhibition of BACE-1 enzyme, and modulation of biometal balance thus impeding Aβ assembly.


2020 ◽  
pp. 1-26
Author(s):  
Melanie Hüttenrauch ◽  
José Sócrates Lopez-Noguerola ◽  
Susana Castro-Obregón

Alzheimer’s disease (AD) is a complex, multifactorial neurodegenerative disorder that represents a major and increasing global health challenge. In most cases, the first clinical symptoms of AD are preceded by neuropathological changes in the brain that develop years to decades before their onset. Therefore, research in the last years has focused on this preclinical stage of AD trying to discover intervention strategies that might, if implemented effectively, delay or prevent disease progression. Among those strategies, mind-body therapies such as yoga and meditation have gained increasing interest as complementary alternative interventions. Several studies have reported a positive impact of yoga and meditation on brain health in both healthy older adults and dementia patients. However, the underlying neurobiological mechanisms contributing to these effects are currently not known in detail. More specifically, it is not known whether yogic interventions, directly or indirectly, can modulate risk factors or pathological mechanisms involved in the development of dementia. In this article, we first review the literature on the effects of yogic practices on outcomes such as cognitive functioning and neuropsychiatric symptoms in patients with mild cognitive impairment and dementia. Then, we analyze how yogic interventions affect different risk factors as well as aspects of AD pathophysiology based on observations of studies in healthy individuals or subjects with other conditions than dementia. Finally, we integrate this evidence and propose possible mechanisms that might explain the positive effects of yogic interventions in cognitively impaired individuals.


2017 ◽  
Author(s):  
Hongde Liu ◽  
Kun Luo

AbstractAlzheimer’s disease (AD) is a severe neurodegenerative disorder. Identification of differentially expressed genes in AD would help to find biomarker and therapeutic target. Here, we carried out an analysis to identify the age-independent and AD-specific genes. We found that genes MET, WIF1 and NPTX2 are down regulated in AD. WIF1 and MET are in signaling of WNT and MET, regulating the activity of GSK3β, thus in AD. Importantly, we found gene GMPR shows a gradual increase in AD progress. A logistic model based on GMPR exhibits a good capacity in classifying AD cases. GMPR’s product GMPR1 links with AMPK and adenosine receptor pathways, thus associating phosphorylation of Tau in AD. This allows GMPR1 to be a therapeutic target. Therefore, we screened five possible inhibitors to GMPR1 by docking GMPR1 with 1174 approved drugs. Among them, lumacaftor is ideal due to its high affinity and light molecular weight. We then tested the effect of lumacaftor on AD model mice. After twenty days of oral administration, β-Amyloid accumulation is slowed down and phosphorylation of Tau is almost eliminated in the treated mice, showing a satisfying effect. In conclusion, the elevated expression level of GMPR tightly associates with AD progress and leads to AD phenotype probably through AMPK and adenosine receptor pathways; and one of therapeutic strategies is to inhibit GMPR’s product with lumacaftor.Significance StatementWe found the elevated expression level of GMPR tightly associates with AD progress and leads to AD phenotype probably through AMPK and adenosine receptor pathways; and the therapeutic strategy targeting GMPR1 with lumacaftor shows a satisfying result.


2021 ◽  
Vol 10 ◽  
pp. e1974
Author(s):  
Meisam Mahdavi ◽  
Saeed Karima ◽  
Shima Rajaei ◽  
Vajihe Aghamolaii ◽  
Hossein Ghahremani ◽  
...  

Background: Alzheimer’s disease (AD) is the main cause of the neurodegenerative disorder, which is not detected unless the cognitive deficits are manifested. An early prediagnostic specific biomarker preferably detectable in plasma and hence non-invasive is highly sought-after. Various hypotheses refer to AD, with amyloid-beta (Aβ) being the most studied hypothesis and inflammation being the most recent theory wherein pro-and anti-inflammatory cytokines are the main culprits. Materials and Methods: In this study, the cognitive performance of AD patients (n=39) was assessed using mini-mental state examination (MMSE), AD assessment scale-cognitive subscale (ADAS-cog), and clinical dementia rating (CDR). Their neuropsychiatric symptoms were evaluated through neuropsychiatric inventory–questionnaire (NPI-Q). Moreover, plasma levels of routine biochemical markers, pro-/anti-inflammatory cytokines such as tumor necrosis factor α (TNF-α), interleukin-1 α (IL-1α), IL-1β, IL-2, IL-4, IL-6, IL-8, IL-12p70, IL-10, Interferon-gamma, chemokines, including prostaglandin E2 (PGE-2), monocyte chemoattractant protein-1, interferon gamma-induced protein 10, Aβ peptide species (42, 40) and Transthyretin (TTR) were measured. Results: Our results revealed that Aβ 42/40 ratio and TTR were correlated (r=0.367, P=0.037). IL-1α was directly correlated with ADAS-cog (r=0.386, P=0.017) and Aβ 40 (r=0.379, P=0.019), but was inversely correlated with IL-4 (r=-0.406, P=0.011). Negative correlations were found between MMSE and PGE2 (r=-0.405, P=0.012) and TNF-α/ IL-10 ratio (r=-0.35, P=0.037). CDR was positively correlated with both PGE2 (r=0.358, P=0.027) and TNF-α (r=0.416, P=0.013). There was a positive correlation between NPI-caregiver distress with CDR (r=0.363, P=0.045) and ADAS-cog (r=0.449, P=0.019). Conclusion: Based on the observed correlation between IL-1α, as a clinical moiety, and ADAS-cog, as a clinical manifestation of AD, anti-IL-1α therapy in AD could be suggested. [GMJ.2021;10:e1974]


2010 ◽  
Vol 15 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Sridhar Krishnamurti

Alzheimer's disease is neurodegenerative disorder which affects a growing number of older adults every year. With an understanding of auditory dysfunction in Alzheimer's disease, the speech-language pathologist working in the health care setting can provide better service to these individuals. The pathophysiology of the disease process in Alzheimer's disease increases the likelihood of specific types of auditory deficits as opposed to others. This article will discuss the auditory deficits in Alzheimer's disease, their implications, and the value of clinical protocols for individuals with this disease.


2020 ◽  
Vol 18 (4) ◽  
pp. 354-359
Author(s):  
Shirin Tarbiat ◽  
Azize Simay Türütoğlu ◽  
Merve Ekingen

Alzheimer's disease is a neurodegenerative disorder characterized by memory loss and impairment of language. Alzheimer's disease is strongly associated with oxidative stress and impairment in the cholinergic pathway, which results in decreased levels of acetylcholine in certain areas of the brain. Hence, inhibition of acetylcholinesterase activity has been recognized as an acceptable treatment against Alzheimer's disease. Nature provides an array of bioactive compounds, which may protect against free radical damage and inhibit acetylcholinesterase activity. This study compares the in vitro antioxidant and anticholinesterase activities of hydroalcoholic extracts of five cultivars of Rosa Damascena Mill. petals (R. damascena 'Bulgarica', R. damascena 'Faik', R. damascena 'Iranica', R. damascena 'Complex-635' and R. damascena 'Complex-637') from Isparta, Turkey. The antioxidant activities of the hydroalcoholic extracts were tested for ferric ion reduction and DPPH radical scavenging activities. The anti-acetylcholinesterase activity was also evaluated. All rose cultivars showed a high potency for scavenging free radical and inhibiting acetylcholinesterase activity. There was a significant correlation between antioxidant and acetylcholinesterase inhibitory activity. Among cultivars, Complex-635 showed the highest inhibitory effect with an IC50 value of 3.92 µg/mL. Our results suggest that all these extracts may have the potential to treat Alzheimer's disease with Complex-635 showing more promise.


Author(s):  
Keng Yoon Yeong ◽  
Christine Law

Alzheimer’s disease (AD) is a neurodegenerative disorder that has affected millions of people worldwide. However, currently there is no treatment to cure the disease. The AD drugs available in the market only manage the disease symptomatically and the effects are usually short-term. Thus, there is a need to look at alternatives AD therapies. Mid-life hypertension has not only been recognised as a risk factor for AD, but its relation with AD has also been well established. Thus, antihypertensives are postulated to be beneficial in managing AD. This literature review aims to shed some light on the potential of repurposing antihypertensives to treat AD, considering recent updates. Four classes of antihypertensives, as well as their potential limitations and future prospects in being utilised as AD therapeutics are discussed in this review.


Sign in / Sign up

Export Citation Format

Share Document