scholarly journals Pharmacokinetics in Zebrafish Embryos (ZFE) Following Immersion and Intrayolk Administration: A Fluorescence-Based Analysis

2021 ◽  
Vol 14 (6) ◽  
pp. 576
Author(s):  
Marlly Guarin ◽  
Annelii Ny ◽  
Noémie De Croze ◽  
Jan Maes ◽  
Marc Léonard ◽  
...  

Zebrafish embryos (ZFE) have increasingly gained in popularity as a model to perform safety screenings of compounds. Although immersion of ZFE is the main route of exposure used, evidence shows that not all small molecules are equally absorbed, possibly resulting in false-negative readouts and incorrect conclusions. In this study, we compared the pharmacokinetics of seven fluorescent compounds with known physicochemical properties that were administered to two-cell stage embryos by immersion or by IY microinjection. Absorption and distribution of the dyes were followed at various timepoints up to 120 hpf by spatiotemporal fluorescence imaging. The concentration (10 µM) and dose (2 mg/kg) used were selected as quantities typically applied in preclinical experiments and zebrafish studies. The data show that in the case of a lipophilic compound (log D: 1.73) the immersion procedure resulted in an intrabody exposure which is similar or higher than that seen after the IY microinjection. In contrast, zero to low intrabody exposure was reached after immersion of the embryos with less lipophilic compounds. In the latter case IY microinjection, a technical procedure that can be easily automated, is highly recommended.

2021 ◽  
Author(s):  
Marlly Guarin ◽  
Ruben Faelens ◽  
Arianna Giusti ◽  
Noémie De Croze ◽  
Marc Léonard ◽  
...  

Abstract Zebrafish (Danio rerio) is increasingly used to assess the pharmacological activity and toxicity of compounds. The spatiotemporal distribution of seven fluorescent alkyne compounds was examined during 48 h after immersion (10 µM) or microinjection (2 mg/kg) in the pericardial cavity (PC), intraperitoneally (IP) and yolk sac (IY) of 3 dpf zebrafish eleuthero-embryos. By modelling the fluorescence of whole-body contours present in fluorescence images, the main pharmacokinetic (PK) parameter values of the compounds were determined. It was demonstrated that especially in case of short incubations (1-3h) immersion can result in limited intrabody exposure to compounds. In this case, PC and IP microinjections represent excellent alternatives. Significantly, IY microinjections did not result in a suitable intrabody distribution of the compounds. Performing a QSPkR (quantitative structure-pharmacokinetic relationship) analysis, LogD was identified as the only molecular descriptor that explains the final uptake of the selected compounds. It was also shown that combined administration of compounds (immersion and microinjection) provides a more stable intrabody exposure, at least in case of a prolonged immersion and compounds with LogD value > 1. These results will help reduce the risk of false negative results and can offer an invaluable input for future translational research and safety assessment applications.


Zygote ◽  
2003 ◽  
Vol 11 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Sarah E. Webb ◽  
Andrew L. Miller

Through the injection of f-aequorin and the use of a photon imaging microscope, we have previously reported that a rhythmic series of intercellular Ca2+ waves circumnavigate zebrafish embryos over a 10 h period during gastrulation and axial segmentation. These waves first appear at about 65% epiboly and continue to arise every 5-10 min up to at least the 16-somite stage. In response to our publication, it was suggested that the waves may be an artefact caused by dechorionation of the embryos and would not be observed during the development of intact embryos (i.e. those with chorions). Here we demonstrate (again initially by aequorin imaging) that the rhythmic intercellular Ca2+ waves that traverse the blastoderm margin can also be observed in embryos that have an intact chorion. In addition, the appearance time, propagation pathway, velocity, duration and Ca2+ rise of the waves, as well as the interwave interval and the timing of wave onset, are approximately the same in both dechorionated embryos and those with an intact chorion. Furthermore, by loading intact embryos with Ca2+-green dextran at the single-cell stage and then using scanning confocal microscopy to obtain high-resolution images, we confirm the presence of circumferential Ca2+ waves and show that they pass through a population of deep cells located at the blastoderm margin. The confirmation of these pan-embryonic Ca2+ waves in zebrafish further corroborates our earlier suggestion that such waves might play a fundamental role in normal embryonic patterning during the gastrula period.


2018 ◽  
Vol 48 (3) ◽  
pp. 880-890 ◽  
Author(s):  
Taifeng Zhou ◽  
Chong Chen ◽  
Caixia Xu ◽  
Hang Zhou ◽  
Bo Gao ◽  
...  

Background/Aims: Three rare MAPK7 variants that predispose individuals to adolescent idiopathic scoliosis have previously been identified. However, the mechanism underlying the effects of the mutations remain unknown. Methods: Human mesenchymal stem cells (hMSCs) were isolated from both patients and healthy volunteer donors, and MAPK7 expression was detected by western blotting and real-time quantitative PCR (RT-qPCR). Zebrafish embryos were injected with mapk7 morpholinos or co-injected with morpholinos and wild-type (WT) MAPK7 messenger RNA (mRNA) at the one-cell stage, followed by calcein staining to evaluate bone formation. hMSCs were transfected with MAPK7 small interfering RNAs and osteogenesis was induced for 14 days. Alizarin red staining was performed and osteoblast markers were detected by western blotting and RT-qPCR. Since RPS6KA3 is a downstream target of MAPK7 and plays an important role in the osteogenesis, zebrafish embryos were then injected with rps6ka3 morpholinos, or co-injected with rps6ka3 or mapk7 morpholinos and WT RPS6KA3 mRNA at the one-cell stage. Results: MAPK7 expression in the patient group was much lower than in the control group. Morpholino-induced mapk7 knockdown in zebrafish embryos led to body curvature, which was significantly reversed by WT MAPK7 mRNA. Calcein staining revealed that mapk7-knockdown delayed the ossification of the vertebrae. MAPK7 silencing in hMSCs impaired osteogenesis and downregulated osteoblast marker expression. Morpholino-induced rps6ka3-knockdown in zebrafish embryos led to body curvature, which was reversed by WT RPS6KA3 mRNA. Interestingly, RPS6KA3 mRNA also partially reversed the phenotype induced by mapk7 morpholinos. Conclusion: Impaired osteogenesis is linked to mutant MAPK7-induced idiopathic scoliosis , and RPS6KA3 may play an important role in this process.


2012 ◽  
Vol 84 (2) ◽  
pp. 215-223 ◽  
Author(s):  
Brian P. Jackson ◽  
Vivien F. Taylor ◽  
Tracy Punshon ◽  
Kathryn L. Cottingham

Arsenic (As) exposure to humans is pervasive, and, increasingly, studies are revealing adverse health effects at ever lower doses. Drinking water is the main route of exposure for many individuals; however, food can be a significant source of As to individuals, especially if their diet is rice-based. Infants are particularly susceptible to dietary exposure, since many first foods contain rice and infants have a low body mass. Here we report on As concentration and speciation in infant formulas and first foods. Speciation is essential for food analysis because of the much greater toxicity of inorganic As species and the possibility that As in food (unlike water) may be present in either inorganic or organic forms. Infant milk formulas were low in total As (2.2–12.6 ng g–1, n = 15). Non-dairy formulas were significantly higher in As than dairy-based formulas. Arsenic in formula was almost exclusively inorganic. Arsenic concentration in purees (n = 41) and stage 2/3 foods (n = 18) ranged from 0.3 to 22 ng g–1. Rice-fortified foods had significantly higher total As concentrations than non-rice-based foods. Again, As speciation was predominantly inorganic with lower concentrations of dimethylarsenic acid (DMA) also present. These data confirm that infants are exposed to As via diet, and suggest that careful attention to diet choices may limit this exposure.


2015 ◽  
Vol 21 (5) ◽  
pp. 427-436 ◽  
Author(s):  
Daniëlle Copmans ◽  
Thorsten Meinl ◽  
Christian Dietz ◽  
Matthijs van Leeuwen ◽  
Julia Ortmann ◽  
...  

Recently, the photomotor response (PMR) of zebrafish embryos was reported as a robust behavior that is useful for high-throughput neuroactive drug discovery and mechanism prediction. Given the complexity of the PMR, there is a need for rapid and easy analysis of the behavioral data. In this study, we developed an automated analysis workflow using the KNIME Analytics Platform and made it freely accessible. This workflow allows us to simultaneously calculate a behavioral fingerprint for all analyzed compounds and to further process the data. Furthermore, to further characterize the potential of PMR for mechanism prediction, we performed PMR analysis of 767 neuroactive compounds covering 14 different receptor classes using the KNIME workflow. We observed a true positive rate of 25% and a false negative rate of 75% in our screening conditions. Among the true positives, all receptor classes were represented, thereby confirming the utility of the PMR assay to identify a broad range of neuroactive molecules. By hierarchical clustering of the behavioral fingerprints, different phenotypical clusters were observed that suggest the utility of PMR for mechanism prediction for adrenergics, dopaminergics, serotonergics, metabotropic glutamatergics, opioids, and ion channel ligands.


2019 ◽  
Author(s):  
Senlian Hong ◽  
Pankaj Sahai-Hernandez ◽  
David Traver ◽  
Peng Wu

ABSTRACTDynamic turnover of cell-surface glycans is involved in a myriad of biological events, making this process an attractive target for in vivo molecular imaging. The metabolic glycan labeling coupled with ‘bioorthogonal chemistry’ has paved the way for visulizing glycans in living organisms. However, a two-step labeling sequence is required, which is prone to tissue penetration difficulties of the imaging probes. Here, by exploring the substrate promiscuity of endogenous glycosyltransferases, we developed a single-step fluorescent glycan labeling strategy by using fluorophore-tagged analogs of nucleotide sugars directly. Injecting the fluorophore-tagged sialic acid and fucose into the yolk of zebrafish embryos at the one-cell stage enables a systematic imaging of sialylation and fucosylation in live zebrafish embryos at various developmental stages. From these studies, we obtained insights into the role of sialylated and fucosylated glycans in zebrafish hematopoiesis.


2008 ◽  
Vol 82 (9) ◽  
pp. 4371-4383 ◽  
Author(s):  
Zi-Liang Wang ◽  
Xiao-Peng Xu ◽  
Bai-Liang He ◽  
Shao-Ping Weng ◽  
Jia Xiao ◽  
...  

ABSTRACT Infectious spleen and kidney necrosis virus (ISKNV) causes a pandemic and serious disease in fish. Infection by ISKNV causes epidermal lesions, in which petechial hemorrhages and abdominal edema are prominent features. ISKNV ORF48R contains a domain similar to that of the platelet-derived growth factor and vascular endothelial growth factor (VEGF) families of proteins. ISKNV ORF48R showed higher similarity to the VEGFs encoded by Megalocytivirus and Parapoxvirus than to those encoded in fish and mammals. We used zebrafish as a model and constructed a recombinant plasmid containing the DNA sequence of ISKNV ORF48R to study ISKNV infection. The plasmid was microinjected into zebrafish embryos at the one-cell stage. Overexpression of the ISKNV ORF48R gene results in pericardial edema and dilation at the tail region of zebrafish embryos, suggesting that ISKNV ORF48R induces vascular permeability. ISKNV ORF48R is also able to stimulate a striking expression of flk1 in the zebrafish dorsal aorta and the axial vein. Furthermore, ISKNV ORF48R, while cooperating with zebrafish VEGF121, can stimulate more striking expression of flk1 than can either ISKNV ORF48R or zebrafish VEGF121 alone. However, decreased expression of FLK-1 by gene knockdown results in the disappearance of pericardial edema and dilation at the tail region of zebrafish embryos induced by overexpression of ISKNV ORF48R in the early stages of embryonic development.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3721-3721
Author(s):  
Rui Xue ◽  
Armand Keating ◽  
Youdong Wang ◽  
Duncan Stewart ◽  
Xiao-Yan Wen

Abstract The zebrafish has emerged as an important model for studying vascular development and angiogenesis. Advantages over other models include rapid embryonic development and optical clarity of the embryos. Abnormal angiogenesis is linked to over 70 health conditions and inhibition of angiogenesis is an excellent target for cancer therapy (including hematopoietic malignancies) as tumor growth requires new blood vessels. In this study, we performed a chemical genetic screen in developing zebrafish embryos to identify compounds that modulate zebrafish vascular development and angiogenesis. A zebrafish transgenic line with the Flk1 promoter controlling the GFP (green fluorescent protein) reporter was used. The entire vascular network of the Flk1:GFP fish was marked by GFP and could be visualized under fluorescence microscopy. Screens were performed in 96 well plates with three embryos/well. The outer membranes of healthy zebrafish embryos expressing green fluorescent vasculature were removed by enzymatic digestion with protease at the 16–18 somite stages. Small molecules/compounds were then added to the water at concentrations of 0.1 μM, 1 μM, and 5 μM for 72 hrs. After 24, 48 and 72 hrs of exposure to the compound, the embryos were visually inspected for viability, gross morphological defects, heartbeating rate and circulation. The known angiogenic inhibitor, PD173074 was used as control. An initial screening of 780 compounds in a small molecule compound library identified four small molecules with potent activities in inhibiting zebrafish vascular development. Notably, 1–5 μM of Hit #1 inhibited the growth of cranial vessels and disrupted vascular patterning, which resulted in uneven spacing between intersegmental vessels. While Hit #2 and #5 also inhibited the growth of cranial vessels, the vascular patterning remained unaffected, however, the drug-treated embryos had weak or missing intersegmental vessels. Fish embryos treated by Hit #3 had an enlarged heart and thinner vessels. Interestingly, this screen also identified one compound (Hit #4) with pro-angiogenic activity. Embryos treated with Hit #4 had increased numbers of intersegmental vessels. Hit #2 is a known inhibitor of c-Jun N-terminal kinase and angiogenesis (SP600125), was recently reported to inhibit the proliferation and migration of human endothelial cells in vitro as well as inhibit solid tumor growth in mice. This observation lends validity to the zebrafish screen and the potential utility of the other hits. Experiments are currently in progress to investigate the detailed time course of the angiogenic inhibition and the potential molecular mechanism. Studies of these angiogenic inhibitors may lead to the development of potent anti-cancer drugs while the pro-angiogenic compound may prove useful in facilitating tissue/organ regeneration. We conclude that the zebrafish model is likely to yield valuable information regarding vasculogenesis and its manipulation.


2013 ◽  
Vol 67 (5) ◽  
Author(s):  
Jakub Treml ◽  
Karel Šmejkal ◽  
Jan Hošek ◽  
Milan Žemlička

AbstractOxidative stress plays a key role in the pathophysiology of many diseases. Hydroxyl radical is the oxidative species most commonly causing damage to cells. The aim of this work was to optimize the method for antioxidant activity determination on a model lipophilic geranylated flavanone, diplacone. This method uses protection of plasmid DNA from oxidation by a hydroxyl radical generated by the Fenton reaction involving oxidation of metal ions using H2O2 and ascorbate. The method was optimized for lipophilic compounds using several solvents and co-solvents. It was found that (2-hydroxypropyl)-β-cyclodextrin (0.1 mass % aq. sol.) is the best co-solvent for our model lipophilic compound to measure the antioxidant activity by the method presented. Other solvents, namely dimethyl sulfoxide, Cremophor EL® (0.1 mass % aq. sol.), ethanol, and methanol, were not suitable for the determination of the antioxidant activity by the method described. Tween 80 (0.1 mass % aq. sol.) and a mixture of 10 vol. % ethanol and 9 mass % bovine serum albumin (aq. sol.) significantly decreased the antioxidant activity of the model lipophilic compound and thus were not suitable for this method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marlly Guarin ◽  
Ruben Faelens ◽  
Arianna Giusti ◽  
Noémie De Croze ◽  
Marc Léonard ◽  
...  

AbstractZebrafish (Danio rerio) is increasingly used to assess the pharmacological activity and toxicity of compounds. The spatiotemporal distribution of seven fluorescent alkyne compounds was examined during 48 h after immersion (10 µM) or microinjection (2 mg/kg) in the pericardial cavity (PC), intraperitoneally (IP) and yolk sac (IY) of 3 dpf zebrafish eleuthero-embryos. By modelling the fluorescence of whole-body contours present in fluorescence images, the main pharmacokinetic (PK) parameter values of the compounds were determined. It was demonstrated that especially in case of short incubations (1–3 h) immersion can result in limited intrabody exposure to compounds. In this case, PC and IP microinjections represent excellent alternatives. Significantly, IY microinjections did not result in a suitable intrabody distribution of the compounds. Performing a QSPkR (quantitative structure-pharmacokinetic relationship) analysis, LogD was identified as the only molecular descriptor that explains the final uptake of the selected compounds. It was also shown that combined administration of compounds (immersion and microinjection) provides a more stable intrabody exposure, at least in case of a prolonged immersion and compounds with LogD value > 1. These results will help reduce the risk of false negative results and can offer an invaluable input for future translational research and safety assessment applications.


Sign in / Sign up

Export Citation Format

Share Document