scholarly journals The Many Applications of Engineered Bacteriophages—An Overview

2021 ◽  
Vol 14 (7) ◽  
pp. 634
Author(s):  
Bryan Gibb ◽  
Paul Hyman ◽  
Christine L. Schneider

Since their independent discovery by Frederick Twort in 1915 and Felix d’Herelle in 1917, bacteriophages have captured the attention of scientists for more than a century. They are the most abundant organisms on the planet, often outnumbering their bacterial hosts by tenfold in a given environment, and they constitute a vast reservoir of unexplored genetic information. The increased prevalence of antibiotic resistant pathogens has renewed interest in the use of naturally obtained phages to combat bacterial infections, aka phage therapy. The development of tools to modify phages, genetically or chemically, combined with their structural flexibility, cargo capacity, ease of propagation, and overall safety in humans has opened the door to a myriad of applications. This review article will introduce readers to many of the varied and ingenious ways in which researchers are modifying phages to move them well beyond their innate ability to target and kill bacteria.

2017 ◽  
Vol 63 (11) ◽  
pp. 865-879 ◽  
Author(s):  
Ayman El-Shibiny ◽  
Salma El-Sahhar

Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.


2006 ◽  
Vol 17 (5) ◽  
pp. 297-306 ◽  
Author(s):  
Andrew M Kropinski

The study of bacterial viruses (bacteriophages or phages) proved pivotal in the nascence of the disciplines of molecular biology and microbial genetics, providing important information on the central processes of the bacterial cell (DNA replication, transcription and translation) and on how DNA can be transferred from one cell to another. As a result of the pioneering genetics studies and modern genomics, it is now known that phages have contributed to the evolution of the microbial cell and to its pathogenic potential. Because of their ability to transmit genes, phages have been exploited to develop cloning vector systems. They also provide a plethora of enzymes for the modern molecular biologist. Until the introduction of antibiotics, phages were used to treat bacterial infections (with variable success). Western science is now having to re-evaluate the application of phage therapy -- a therapeutic modality that never went out of vogue in Eastern Europe -- because of the emergence of an alarming number of antibiotic-resistant bacteria. The present article introduces the reader to phage biology, and the benefits and pitfalls of phage therapy in humans and animals.


2019 ◽  
Vol 73 ◽  
pp. 414-420 ◽  
Author(s):  
Jan Borysowski ◽  
Maciej Przybylski ◽  
Ryszard Międzybrodzki ◽  
Barbara Owczarek ◽  
Andrzej Górski

Introduction: Bacteriophages (viruses of bacteria) are used in the treatment of antibiotic‑resistant infections. Moreover, they are an important component of the mucosal microbiota. The objective of this study was to investigate the effects of T4 and A5/80 bacteriophages on the expression of genes involved in antimicrobial immunity, including Toll‑like receptors. Material/Methods: The expression of genes was determined in the A549 cell line using RT2 Profiler PCR Array. Results: Purified T4 and A5/80 phage preparations significantly affected the expression of 7 and 10 out of 84 examined genes, respectively. Discussion: Our results are important for phage therapy of bacterial infections and provide novel insights into the role of phages from the mucosal microbiota. They may also lead to novel applications of phages as antiviral and immunomodulatory agents.


Author(s):  
Brandon A. Berryhill ◽  
Douglas L. Huseby ◽  
Ingrid C. McCall ◽  
Diarmaid Hughes ◽  
Bruce R. Levin

AbstractIn response to increasing frequencies of antibiotic-resistant pathogens, there has been a resurrection of interest in the use of bacteriophage to treat bacterial infections: phage therapy. Here we explore the potential of a seemingly ideal phage, PYOSa, for combination phage and antibiotic treatment of Staphylococcus aureus infections. (i) This K-like phage has a broad host range; all 83 tested clinical isolates of S.aureus tested were susceptible to PYOSa. (ii) Because of the mode of action of PYOSaS. aureus is unlikely to generate classical receptor-site mutants resistant to PYOSa; none were observed in the 13 clinical isolates tested. (iii) PYOSa kills S. aureus at high rates. On the downside, the results of our experiments and tests of the joint action of PYOSa and antibiotics raise issues that must be addressed before PYOSa is employed clinically. Despite the maintenance of the phage, PYOSa does not clear the populations of S. aureus. Due to the ascent of a phenotypically diverse array of small colony variants following an initial demise, the bacterial populations return to densities similar to that of phage-free controls. Using a combination of mathematical modeling and in vitro experiments, we postulate and present evidence for a mechanism to account for the demise–resurrection dynamics of PYOSa and S. aureus. Critically for phage therapy, our experimental results suggest that treatment with PYOSa followed by bactericidal antibiotics can clear populations of S. aureus more effectively than the antibiotics alone.Significance StatementThe increasing frequency of antibiotic-resistant pathogens has fostered a quest for alternative means to treat bacterial infections. Prominent in this quest is a therapy that predates antibiotics: bacteriophage. This study explores the potential of a phage, PYOSa, for treating Staphylococcus aureus infections in combination with antibiotics. On first consideration, this phage, isolated from a commercial therapeutic cocktail, seems ideal for this purpose. The results of this population dynamic and genomic analysis study identify a potential liability of using PYOSa for therapy. Due to the production of potentially pathogenic atypical small colony variants, PYOSa alone cannot eliminate S. aureus populations. However, we demonstrate that by following the administration of PYOSa with bactericidal antibiotics, this limitation and potential liability can be addressed.


2008 ◽  
Vol 29 (2) ◽  
pp. 96 ◽  
Author(s):  
Nina Chanishvili ◽  
Richard Sharp

The lysis of bacteria by bacteriophage was independently discovered by Frederick Twort and Felix d?Herelle but it was d?Herelle who proposed that bacteriophage might be applied to the control of bacterial diseases. Within the former Soviet Union (FSU), bacteriophage therapy was researched and applied extensively for the treatment of a wide range of bacterial infections. In the West, however, it was not explored with the same enthusiasm and was eventually discarded with the arrival of antibiotics. However, the increase in the incidence of multi-antibiotic-resistant bacteria and the absence of effective means for their control has led to increasing international interest in phage therapy and in the long experience of the Eliava Institute. The Eliava Institute of Bacteriophage, Microbiology and Virology (IBMV), which celebrates its 85th anniversary in 2008, was founded in Tbilisi in 1923 through the joint efforts of d?Herelle and the Georgian microbiologist, George Eliava.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Graham F. Hatfull ◽  
Rebekah M. Dedrick ◽  
Robert T. Schooley

Antibiotic resistance in bacterial pathogens presents a substantial threat to the control of infectious diseases. Development of new classes of antibiotics has slowed in recent years due to pressures of cost and market profitability, and there is a strong need for new antimicrobial therapies. The therapeutic use of bacteriophages has long been considered, with numerous anecdotal reports of success. Interest in phage therapy has been renewed by recent clinical successes in case studies with personalized phage cocktails, and several clinical trials are in progress. We discuss recent progress in the therapeutic use of phages and contemplate the key factors influencing the opportunities and challenges. With strong safety profiles, the main challenges of phage therapeutics involve strain variation among clinical isolates of many pathogens, battling phage resistance, and the potential limitations of host immune responses. However, the opportunities are considerable, with the potential to enhance current antibiotic efficacy, protect newly developed antibiotics, and provide a last resort in response to complete antibiotic failure. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Chirag Choudhary ◽  

The idea of using a virus to kill bacteria may seem counterintuitive, but it may be the future of treating bacterial infections. Before the COVID-19 pandemic, one of the most frightening biological agents were so-called “superbugs” – antibiotic resistant bacteria – which could not be treated with conventional therapeutics. When antibiotics were first developed, they were hailed as a panacea. A panacea they were not.


2017 ◽  
Vol 38 (2) ◽  
pp. 63 ◽  
Author(s):  
Rustam Aminov ◽  
Jonathan Caplin ◽  
Nina Chanishvili ◽  
Aidan Coffey ◽  
Ian Cooper ◽  
...  

The emergence of antibiotic-resistant bacteria and decrease in the discovery rate of novel antibiotics takes mankind back to the ‘pre-antibiotic era' and search for alternative treatments. Bacteriophages have been one of promising alternative agents which can be utilised for medicinal and biological control purposes in agriculture and related fields. The idea to treat bacterial infections with phages came out of the pioneering work of Félix d‘Hérelle but this was overshadowed by the success of antibiotics. Recent renewed interest in phage therapy is dictated by its advantages most importantly by their specificity against the bacterial targets. This prevents complications such as antibiotic-induced dysbiosis and secondary infections. This article is compiled by the participants of the Expert Round Table conference ‘Bacteriophages as tools for therapy, prophylaxis and diagnostics' (19–21 October 2015) at the Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia. The first paper from the Round Table was published in the Biotechnology Journal1. This In Focus article expands from this paper and includes recent developments reported since then by the Expert Round Table participants, including the implementation of the Nagoya Protocol for the applications of bacteriophages.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 721
Author(s):  
Saija Kiljunen

The emergence of antibiotic-resistant bacteria presents a major challenge in terms of increased morbidity, mortality, and healthcare costs [...]


Sign in / Sign up

Export Citation Format

Share Document