scholarly journals Modular Synthesis and Antiproliferative Activity of New Dihydro-1H-pyrazolo[1,3-b]pyridine Embelin Derivatives

2021 ◽  
Vol 14 (10) ◽  
pp. 1026
Author(s):  
Pedro Martín-Acosta ◽  
Ángel Amesty ◽  
Miguel Guerra-Rodríguez ◽  
Borja Guerra ◽  
Leandro Fernández-Pérez ◽  
...  

A set of new dihydro-1H-pyrazolo[1,3-b]pyridine and pyrazolo[1,3-b]pyridine embelin derivatives was synthesized through a multicomponent reaction from natural embelin, 3-substituted-5-aminopyrazoles and aldehydes. The synthesized compounds were evaluated against three hematologic tumor cell lines, HEL (acute erythroid leukemia), K-562 (chronic myeloid leukemia) and HL-60 (acute myeloid leukemia), and five breast cancer cell lines (SKBR3, MCF-7, MDA-MB-231, BT-549, HS-578T). The primate non-malignant kidney Vero cell line was used as the control of cytotoxicity. From the obtained results, some structure–activity relationships were outlined. Furthermore, in silico prediction of physicochemical properties and ADME parameters were determined for the derivatives with the best antiproliferative values.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4352-4352
Author(s):  
Jennifer M.H. McCormack ◽  
Tanya Feldberg ◽  
Jatinder Lamba

Abstract Abstract 4352 Background: Triptolide, a diterpenoid derived from the Chinese herb Tripterygium wilfordii Hook f., has shown anti-tumor effects in various leukemia and solid tumor cell lines in vitro. Previous studies have shown that triptolide synergizes with various chemotherapeutic agents in both leukemia and solid tumor cell lines. Triptolide has been shown to synergize with cytarabine in the THP-1 acute myeloid leukemia (AML) cell line (Pigneux et al 2008). This is of particular interest because cytarabine forms the backbone of AML therapy in both children and adults, and cytarabine resistance poses a significant challenge in the setting of refractory or relapsed AML. Therefore, an agent that works synergistically with cytarabine is of particular interest as a potential new agent for the treatment of relapsed or refractory AML. The aim of this study was to assess the cytotoxicity of triptolide, both as a single agent and in combination with cytarabine, in human AML cell lines representing low-, intermediate-, and high-relapse risk groups. Methods: The following cell lines were selected: Kasumi-1 (low risk, t(8;21)), HL-60 and THP-1 (intermediate risk), and MV4-11 (high risk, FLT3 ITD). Kasumi-1 and HL-60 cells were cultured in RPMI 1640 media with 20% fetal bovine serum (FBS). MV4-11 cells were cultured in IMDM media with 10% FBS and THP-1 cells were cultured in RPMI with 10% FBS. We performed the following drug treatments: triptolide alone; cytarabine alone; co-treatment with triptolide and cytarabine. Drug-induced cytotoxicity after 48 hours of treatment was assessed using the MTT assay. The combination index (CI) was determined using Calcusyn software (Biosoft, Cambridge, UK). Results: Single-agent triptolide induced cell death in all human AML cell lines tested, including cytarabine-resistant Kasumi-1 cells, at low nanomolar concentrations (average Ic50 ranging from 6–15 nM). The combination of triptolide and cytarabine acted synergistically to induce cell death in THP-1 cells as has been previously reported. Interestingly, the combination of triptolide and cytarabine acted in an antagonistic fashion in all other cell lines tested, except for at low drug concentrations in MV4-11 cells. Conclusion: Single-agent triptolide exerts a cytotoxic effect on human AML cell lines, including those that are relatively resistant to cytarbine. The effect of the combination of triptolide and cytarabine was cell-line dependent. The results of this study warrant further investigation on the potential role of triptolide as an anti-leukemic agent in combination with cytarabine. Disclosures: No relevant conflicts of interest to declare.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3917 ◽  
Author(s):  
Oramas-Royo ◽  
López-Rojas ◽  
Amesty ◽  
Gutiérrez ◽  
Flores ◽  
...  

A series of 34 1,2,3-triazole-naphthoquinone conjugates were synthesized via copper-catalyzed cycloaddition (CuAAC). They were evaluated for their in vitro antimalarial activity against chloroquine-sensitive strains of Plasmodium falciparum and against three different tumor cell lines (SKBr-3, MCF-7, HEL). The most active antimalarial compounds showed a low antiproliferative activity. Simplified analogues were also obtained and some structure–activity relationships were outlined. The best activity was obtained by compounds 3s and 3j, having IC50 of 0.8 and 1.2 μM, respectively. Molecular dockings were also carried on Plasmodium falciparum enzyme dihydroorotate dehydrogenase (PfDHODH) in order to rationalize the results.


SynOpen ◽  
2018 ◽  
Vol 02 (02) ◽  
pp. 0114-0121
Author(s):  
Mohamed Ahsan ◽  
Bhawani Kumawat ◽  
Sonu Kumawat ◽  
Piush Sharma ◽  
Mohammad Bakht ◽  
...  

A novel series of 3-(4-fluorophenyl)-4,5-dihydro-5-(3,4,5-trimethoxy/4-nitro phenyl)-N-(substituted-phenyl)pyrazole-1-carboxamide analogues 4a–n was synthesized in two steps from 4-fluoroacetophenone. The pyrazoline analogues were evaluated for cytotoxicity against two breast cancer cell lines (MCF-7 and MBA-MD-231) by the sulforhodamine B (SRB) assay. N-(4-Chlorophenyl)-3-(4-fluorophenyl)-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole-1-carboxamide (4b) showed the most promising cytotoxicity among the series, with GI50 <0.1 and 45.8 μM against the cancer cell lines, MCF-7 and MDA-MB-231, respectively. The anticancer activity of 4b was found to be comparable to that of the standard drug adriamycin (GI50 <0.1) against the MCF-7 cancer cell line. Structure activity relationships (SAR) are also considered.


2018 ◽  
Vol 8 (3) ◽  
pp. 159 ◽  
Author(s):  
Meghan Fragis ◽  
Abdulmonem I. Murayyan ◽  
Suresh Neethirajan

Background: Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer deaths among Canadian women. Cancer management through changes in lifestyle, such as increased intake of foods rich in dietary flavonoids, have been shown to decrease the risk associated with breast, liver, colorectal, and upper-digestive cancers in epidemiologic studies. Onions are high in flavonoid content and one of the most common vegetables. Additionally, onions are used in most Canadian cuisines.Methods: We investigated the effect of five prominent Ontario grown onion (Stanley, Ruby Ring, LaSalle, Fortress, and Safrane) extracts on two subtypes of breast cancer cell lines: a triple negative breast cancer line MDA-MB-231 and an ER+ breast cancer line MCF-7.Results: These onion extracts elicited strong anti-proliferative, anti-migratory, and cytotoxic activities on both the cancer cell lines. Flavonoids present in these onion extracts induced apoptosis, cell cycle arrest in the G2/M phase, and a reduction in mitochondrial membrane potential at dose-dependent concentrations. Onion extracts were more effective against MDA-MB-231 compared to the MCF-7 cell line. Conclusion: In this study, we investigated the extracts synthesized from Ontario-grown onion varieties in inducing anti-migratory, cytostatic, and cytotoxic activities in two sub-types of human breast cancer cell lines. Anti-tumor activity of these extracts depends upon the varietal and can be formulated into nutraceuticals and functional foods for the wellbeing of cancer patients. Overall, the results suggest that onion extracts are a good source of flavonoids with anti-cancerous properties.Keywords: onion extracts; flavonoids; anti-proliferative; breast cancer; cytotoxic activity


2018 ◽  
Vol 18 (2) ◽  
pp. 295-301 ◽  
Author(s):  
Shabnam Farzaneh ◽  
Elnaz Zeinalzadeh ◽  
Bahram Daraei ◽  
Soraya Shahhosseini ◽  
Afshin Zarghi

Background: Due to the astonishing properties of ferrocene and its derivatives, it has a broad application in diverse areas. Numerous ferrocene derivatives demonstrated anti-proliferative activity. Also COX-2, as a key isoenzyme for production of prostaglandins, is frequently overexpressed in various cancers. It is now recognized that COX-2 over expression promotes tumorigenic functions which can be suppressed by COX-2 inhibitors, a phenomenon useful for the preventing of tumor progression. The combination of COX-2 inhibitors with other anti-cancer or cancer prevention drugs may reduce their side effects in future cancer prevention and treatment. Objective: Owing to high anticancer potential of ferrocene derivatives and considerable COX-2 inhibitory and cytotoxicity effects of our previously synthesized chalcones, we decided to incorporate the ferrocenyl moiety into appropriate COX-2 inhibitor chalcone based scaffold, to evaluate COX-2 inhibitory activity as well as anticancer activities. Methods: Chalcones were synthesized via clasien-schmidt condensation of methylsulfonyl aldehyde and acetyl ferrocene. Further different amines with solvent free and ultra sound condition were reacted with chalcones to have different 1-ferrocenyl-3-amino carbonyl compounds. Docking study was carried out with Auto Dock vina software. All the newly-synthesized compounds were evaluated for their cyclooxygenase-2 (COX-2) inhibitory activity using chemiluminescent enzyme assays as well as cytotoxicity activity against MCF-7 and T47D and fibroblast cell lines by MTT assay. Results: In vitro COX-1/COX-2 inhibition studies demonstrated that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.05-0.12 µM range, and COX-2 selectivity indexes (SI) in the 148.3-313.7 range. These results indicated that either potency or selectivity of COX-2 inhibitory activity was affected by the nature and size of the substituents on C-3 of propane-1-one. Also anti-proliferative and toxicity activities of synthesized compounds against breast cancer cell lines MCF-7 and T47D and fibroblast cell lines showed that the synthesized compounds had mild to moderate cytotoxicity against MCT7 and T47D breast cancer cell lines at 10 µM concentration. In vitro COX-1/COX-2 inhibition studies and anticancer activity against MCF-7, identified 1-ferrocenyl-3-(4-methylsulfonylphenyl) propen-1-one as a potent compound (IC50 COX-2 = 0.05 µM, MCF-7: % inhibition (at concentration of 10 µM) = 32.7%), and also 1-ferrocenyl-3- (propan-1-amine)-3-(4-methylsulfonylphenyl) propan-1-one showed the most selectivity on COX-2 inhibition (selectivity index= 313.7). Conclusion: A novel group of ferrocene compounds, possessing a methyl sulfonyl COX-2 pharmacophore were synthesized to investigate the effect of different substituents on selectivity and potency of COX-2 inhibitory activity and their cytotoxicity effects. This study indicates that 1-ferrocenyl-3-amino carbonyl compounds having ferrocene motif and methyl sulfonyl COX-2 pharmacophore is a suitable scaffold to design COX-2 inhibitors and anti-cancer agents.


Author(s):  
Stefan Dimov ◽  
Anelia Ts. Mavrova ◽  
Denitsa Yancheva ◽  
Biliana Nikolova ◽  
Iana Tsoneva

Aims: The purpose was the synthesis of some new thienopyrimidines derivative of 1,3-disubstituted benzimidazoles and the evaluation of their cytotoxicity towards MDA-MB-231 and MCF-7 cell lines as well 3T3 cells. Background: An overexpression or mutational activation of TK receptors EGFR and HER2/neu are characteristic for tumors. It has been found that some thieno[2,3-d]pyrimidines exhibit better inhibitory activity against epidermal growth factor receptor (EGFR/ErbB-2) tyrosine kinase in comparison to aminoquinazolines. Breast cancer activity towards MDAMB-231 and MCF-7 cell lines by inhibiting EGFR was revealed by a novel 2-arylbenzimidazole. This motivated the synthesis of new thienopyrimidines possessing benzimidazole fragment in order to evaluate their cytotoxicity to the above mentioned cell lines. Objective: The objectives were the design and synthesis of a novel series thieno[2,3-d]pyrimidines bearing biologically active moieties as 1,3-disubstituted-benzimidazole heterocycle structurally similar to diaryl ureas in order to evaluate their cytotoxicity against MDA-MB-231, MCF-7 breast cancer cell lines. Methods: N,N-disubstituted benzimidazole-2-one carbonitriles were synthesized by Aza-Michael addition and used as precursors to generate some of the new thieno[2,3-d]pyrimidines in acidic medium. The interaction of chloroethyl-2- thienopyrimidines and 2-amino-benzimidazole resp. benzimidazol-2-one nitriles under solid-liquid transfer catalysis conditions lead to obtaining of new thienopyrimidines. MTT assay for cells survival was performed in order to establish the cytotoxicity of the tested compounds. Fluorescence study was used to elucidate some aspect of mechanism. Results: The effect of nine of the synthesized compounds was investigated towards MDA-MB-231 and MCF-7 cells as well as to 3T3 cells. Thieno[2,3-d]pyirimidine-4-one 16 (IC50 – 0.058 μM) and 21 (IC50 – 0.029 μM) possess high cytotoxicity against MDA-MB-231 cells after 24h. The most toxic against breast cancer MCF-7 cells was compounds 21 (IC50 – 0.074 μM), revealing lower cytotoxicity towards mouse fibroblast 3T3 cells with IC50 – 0.20 μM. SAR analisys was performed. Fluorescence study of the treatment of MDA-MB cells with compound 21 was carried out in order to clarify some aspects of mechanism of action. Conclusion: The relationship between cytotoxicity of compounds 14 and 20 against MCF-7 and 3T3 cells can suggest a similar mechanism of action. The antitumor potential of the tested compounds proves the necessity for further investigation to estimate the exact inhibition pathway in the cellular processes. The fluorescence study of the treatment of MDA-MB cells with compound 21 showed a rapid process of apoptosis.


2019 ◽  
Vol 18 (10) ◽  
pp. 1457-1468
Author(s):  
Michelle X.G. Pereira ◽  
Amanda S.O. Hammes ◽  
Flavia C. Vasconcelos ◽  
Aline R. Pozzo ◽  
Thaís H. Pereira ◽  
...  

Background: Acute myeloid leukemia (AML) represents the largest number of annual deaths from hematologic malignancy. In the United States, it was estimated that 21.380 individuals would be diagnosed with AML and 49.5% of patients would die in 2017. Therefore, the search for novel compounds capable of increasing the overall survival rate to the treatment of AML cells is urgent. Objectives: To investigate the cytotoxicity effect of the natural compound pomolic acid (PA) and to explore the mechanism of action of PA in AML cell lines with different phenotypes. Methods: Three different AML cell lines, HL60, U937 and Kasumi-1 cells with different mechanisms of resistance were used to analyze the effect of PA on the cell cycle progression, on DNA intercalation and on human DNA topoisomerases (hTopo I and IIα) in vitro studies. Theoretical experiments of the inhibition of hTopo I and IIα were done to explore the binding modes of PA. Results: PA reduced cell viability, induced cell death, increased sub-G0/G1 accumulation and activated caspases pathway in all cell lines, altered the cell cycle distribution and inhibited the catalytic activity of both human DNA topoisomerases. Conclusion: Finally, this study showed that PA has powerful antitumor activity against AML cells, suggesting that this natural compound might be a potent antineoplastic agent to improve the treatment scheme of this neoplasm.


2020 ◽  
Vol 10 (3) ◽  
pp. 257-261
Author(s):  
Tati Herlina ◽  
Merlin ◽  
Mohd. Azlan ◽  
Unang Supratman

Background: Erythrina poeppigiana (Leguminosae) is a high-growing plant with an orange flower that is widely distributed in tropical and subtropical countries. This particular plant is widely used in traditional medicine for gynecological complications and the treatment of various diseases. There exists no previous information regarding cytotoxic compounds from this plant. Objective: This research is to isolate cytotoxic compounds from E. poeppigiana. Methods: The isolation step was carried out using a combination of chromatographic techniques to obtain isolated three compounds (1, 2, and 3). Results: The chemical structure of isolated compounds was elucidated by spectroscopic methods and identified as β-erythroidine (1), 8-oxo-β-erythroidine (2), and 8-oxo-α-erythroidine (3). Compounds (1-3) showed cytotoxic activity against MCF-7 breast cancer line with IC50 values of 36.8, 60.8 and 875.4 μM, respectively. Conclusion: Three compounds have been successfully isolated from Erythrina poeppigiana (Leguminosae), showing cytotoxic properties against MCF-7 breast cancer line. Structure-activity relationship studies showed that the presence of enone moiety on compound 1 can reduce its cytotoxic activity towards MCF-7 breast cancer line.


2021 ◽  
Vol 11 (1) ◽  
pp. 460
Author(s):  
Petra Otevřelová ◽  
Barbora Brodská

Survivin is a 16.5 kDa protein highly expressed in centrosomes, where it controls proper sister chromatid separation. In addition to its function in mitosis, survivin is also involved in apoptosis. Overexpression of survivin in many cancer types makes it a suitable target for cancer therapy. Western blotting and confocal microscopy were used to characterize the effect of chemotherapy on acute myeloid leukemia (AML) cells. We found enhanced survivin expression in a panel of AML cell lines treated with cytarabine (Ara-C), which is part of a first-line induction regimen for AML therapy. Simultaneously, Ara-C caused growth arrest and depletion of the mitotic cell fraction. Subsequently, the effect of a second component of standard therapy protocol, idarubicin, and of a known survivin inhibitor, YM-155, on cell viability and survivin expression and localization in AML cells was investigated. Idarubicin reversed Ara-C-induced survivin upregulation in the majority of AML cell lines. YM-155 caused survivin deregulation together with a viability decrease in cells resistant to idarubicin treatment, suggesting that YM-155 might be efficient in a specific subset of AML patients. Expression levels of other apoptosis-related proteins, in particular X-linked inhibitor of apoptosis (XIAP), Mcl-1, and p53, and of the cell-cycle inhibitor p21 considerably changed in almost all cases, confirming the off-target effects of YM-155.


Sign in / Sign up

Export Citation Format

Share Document