scholarly journals Late Na+ Current Is [Ca2+]i-Dependent in Canine Ventricular Myocytes

2021 ◽  
Vol 14 (11) ◽  
pp. 1142
Author(s):  
Dénes Kiss ◽  
Balázs Horváth ◽  
Tamás Hézső ◽  
Csaba Dienes ◽  
Zsigmond Kovács ◽  
...  

Enhancement of the late sodium current (INaL) increases arrhythmia propensity in the heart, whereas suppression of the current is antiarrhythmic. In the present study, we investigated INaL in canine ventricular cardiomyocytes under action potential voltage-clamp conditions using the selective Na+ channel inhibitors GS967 and tetrodotoxin. Both 1 µM GS967 and 10 µM tetrodotoxin dissected largely similar inward currents. The amplitude and integral of the GS967-sensitive current was significantly smaller after the reduction of intracellular Ca2+ concentration ([Ca2+]i) either by superfusion of the cells with 1 µM nisoldipine or by intracellular application of 10 mM BAPTA. Inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII) by KN-93 or the autocamtide-2-related inhibitor peptide similarly reduced the amplitude and integral of INaL. Action potential duration was shortened in a reverse rate-dependent manner and the plateau potential was depressed by GS967. This GS967-induced depression of plateau was reduced by pretreatment of the cells with BAPTA-AM. We conclude that (1) INaL depends on the magnitude of [Ca2+]i in canine ventricular cells, (2) this [Ca2+]i-dependence of INaL is mediated by the Ca2+-dependent activation of CaMKII, and (3) INaL is augmented by the baseline CaMKII activity.

1988 ◽  
Vol 254 (6) ◽  
pp. H1157-H1166 ◽  
Author(s):  
J. A. Wasserstrom ◽  
J. J. Salata

We studied the effects of tetrodotoxin (TTX) and lidocaine on transmembrane action potentials and ionic currents in dog isolated ventricular myocytes. TTX (0.1-1 x 10(-5) M) and lidocaine (0.5-2 x 10(-5) M) decreased action potential duration, but only TTX decreased the maximum rate of depolarization (Vmax). Both TTX (1-2 x 10(-5) M) and lidocaine (2-5 x 10(-5) M) blocked a slowly inactivating toward current in the plateau voltage range. The voltage- and time-dependent characteristics of this current are virtually identical to those described in Purkinje fibers for the slowly inactivating inward Na+ current. In addition, TTX abolished the outward shift in net current at plateau potentials caused by lidocaine alone. Lidocaine had no detectable effect on the slow inward Ca2+ current and the inward K+ current rectifier, Ia. Our results indicate that 1) there is a slowly inactivating inward Na+ current in ventricular cells similar in time, voltage, and TTX sensitivity to that described in Purkinje fibers; 2) both TTX and lidocaine shorten ventricular action potentials by reducing this slowly inactivating Na+ current; 3) lidocaine has no additional actions on other ionic currents that contribute to its ability to abbreviate ventricular action potentials; and 4) although both agents shorten the action potential by the same mechanism, only TTX reduces Vmax. This last point suggests that TTX produces tonic block of Na+ current, whereas lidocaine may produce state-dependent Na+ channel block, namely, blockade of Na+ current only after Na+ channels have already been opened (inactivated-state block).


2007 ◽  
Vol 292 (1) ◽  
pp. H56-H65 ◽  
Author(s):  
Stefania Vecchietti ◽  
Eleonora Grandi ◽  
Stefano Severi ◽  
Ilaria Rivolta ◽  
Carlo Napolitano ◽  
...  

The effects of two SCN5A mutations (Y1795C, Y1795H), previously identified in one Long QT syndrome type 3 (LQT3) and one Brugada syndrome (BrS) families, were investigated by means of numerical modeling of ventricular action potential (AP). A Markov model capable of reproducing a wild-type as well as a mutant sodium current ( INa) was identified and was included into the Luo-Rudy ventricular cell model for action potential (AP) simulation. The characteristics of endocardial, midmyocardial, and epicardial cells were reproduced by differentiating the transient outward current ( ITO) and the ratio of slow delayed rectifier potassium ( IKs) to rapid delayed rectifier current ( IKr). Administration of flecainide and mexiletine was simulated by appropriately modifying INa, calcium current ( ICa), ITO, and IKr. Y1795C prolonged AP in a rate-dependent manner, and early afterdepolarizations (EADs) appeared during bradycardia in epicardial and midmyocardial cells; flecainide and mexiletine shortened AP and abolished EADs. Y1795H resulted in minimal changes in the APs; flecainide but not mexiletine induced APs heterogeneity across the ventricular wall that accounts for the ST segment elevation induced by flecainide in Y1795H carriers. The AP abnormalities induced by Y1795H and Y1795C can explain the clinically observed surface ECG phenotype. For the first time by modeling the effects of flecainide and mexiletine, we are able to gather mechanistic insights on the response to drugs administration observed in affected patients.


2008 ◽  
Vol 27 (7) ◽  
pp. 553-558 ◽  
Author(s):  
KS Kim ◽  
SJ Park ◽  
HA Lee ◽  
DK Kim ◽  
EJ Kim

Sibutramine is known to induce cardiovascular side effects such as tachycardia, vasodilation, and hypertension. The present study was aimed to examine the effects of sibutramine on action potential of guinea pig papillary muscle, recombinant hERG currents (IhERG), and inward currents (INa and ICa) of rat ventricular myocytes. Sibutramine at 30 μg/mL induced a shortening of action potential duration (APD) of guinea pig papillary muscle; on average, APD30 and APD90 were shortened by 23% and 17% at a stimulation rate of 1 Hz, respectively. Sibutramine suppressed the following currents: IhERG (IC50:2.408 ± 0.5117 μg/mL), L-type Ca current (IC50:2.709 ± 0.4701 μg/mL), and Na current (IC50:7.718 ± 1.7368 μg/mL). Sibutramine blocked IhERG, ICa, and INa in a concentration-dependent manner. In conclusion, sibutramine exerted a shortening effect on APD in guinea pig papillary muscle through its more powerful blocking effects on ICa and INa rather than IhERG.


1999 ◽  
Vol 276 (1) ◽  
pp. H98-H106 ◽  
Author(s):  
Gui-Rong Li ◽  
Baofeng Yang ◽  
Jianlin Feng ◽  
Ralph F. Bosch ◽  
Michel Carrier ◽  
...  

The mechanism of action potential abbreviation caused by increasing rate in human ventricular myocytes is unknown. The present study was designed to determine the potential role of Ca2+ current ( I Ca) in the rate-dependent changes in action potential duration (APD) in human ventricular cells. Myocytes isolated from the right ventricle of explanted human hearts were studied at 36°C with whole cell voltage and current-clamp techniques. APD at 90% repolarization decreased by 36 ± 4% when frequency increased from 0.5 to 2 Hz. Equimolar substitution of Mg2+ for Ca2+ significantly decreased rate-dependent changes in APD (to 6 ± 3%, P < 0.01). Peak I Ca was decreased by 34 ± 3% from 0.5 to 2 Hz ( P < 0.01), and I Ca had recovery time constants of 65 ± 12 and 683 ± 39 ms at −80 mV. Action potential clamp demonstrated a decreasing contribution of I Ca during the action potential as rate increased. The rate-dependent slow component of the delayed rectifier K+current ( I Ks) was not observed in four cells with an increase in frequency from 0.5 to 3.3 Hz, perhaps because the I Ks is so small that the increase at a high rate could not be seen. These results suggest that reduction of Ca2+influx during the action potential accounts for most of the rate-dependent abbreviation of human ventricular APD.


1987 ◽  
Vol 252 (2) ◽  
pp. H325-H333 ◽  
Author(s):  
Y. Imoto ◽  
T. Ehara ◽  
H. Matsuura

The mechanism underlying the Ba2+-induced automaticity was studied in isolated guinea pig ventricular myocytes using the whole-cell clamp method and a patch electrode. In the presence of 0.1–0.3 mM Ba2+, application of a weak depolarizing current induced repetitive firing of spontaneous action potentials. Application of tetrodotoxin or Ca2+ channel blockers and removal of external Na+ and Ca2+ did not abolish the rhythmic activity, thereby suggesting that activation of inward currents played no crucial role in the generation of this rhythmicity. Voltage-clamp studies revealed that Ba2+ blocked the inward rectifier K+ current (iK1) in a voltage- and time-dependent manner with a greater and more rapid block at more negative potentials. This Ba2+ action could quantitatively be fitted with a model of the conventional bimolecular adsorption isotherm with a voltage-dependent dissociation constant. Simulation studies using this model showed that a membrane model, in which only the iK1 system and a small leak conductance were incorporated, could reproduce an automatic activity similar to that seen experimentally. Thus, in isolated ventricular cells, the voltage- and time-dependent block of iK1 by Ba2+ appears to be one important mechanism underlying the automaticity.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
B Horvath ◽  
MN Khan ◽  
T Hezso ◽  
C Dienes ◽  
Z Kovacs ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – EU funding. Main funding source(s): National Research, Development and Innovation Office New National Excellence Programme Enhancement of the late Na+ current (INa,late) increases arrhythmia propensity in the heart, while suppression of the current is antiarrhythmic. GS-458967 (GS) is an agent considered to be a selective blocker of INa,late. In the present study, effects of GS967 on INa,late, on L-type calcium current (ICaL), and on action potential (AP) morphology were studied in canine ventricular myocytes by using conventional voltage clamp, action potential voltage clamp and sharp microelectrode techniques. These effects of GS were compared to tetrodotoxin (TTX) and to the class I/B antiarrhythmic compound mexiletine. GS (1 μM), mexiletine (40 μM) and TTX (10 μM) dissected largely similarly shaped inward currents under action potential voltage clamp conditions. In case of GS and mexiletine, the amplitude and integral of this inward current was significantly smaller when measured in the presence of 1 μM nisoldipine, while no difference was observed in case of TTX. Under conventional voltage clamp conditions, INa,late was significantly reduced by 1 μM GS and 40 μM mexiletine (about 79% and 63% reduction of current integrals, respectively). The integral of ICa,L was moderately but significantly decreased by both drugs (reduction of 9% and 14%, respectively). These changes were associated with a faster inactivation of ICa,L. Drug effects on early Na+ current (INa,early) were assessed by analyzing the maximal rate of depolarization (V + max) in multicellular preparations. Both GS and mexiletine showed fast onset and offset kinetics: 110 ms and 289 ms offset time constants, respectively, as determined from V + max measurements in right ventricular papillary muscles, while the onset kinetics was characterized by 5.3 AP and 2.6 AP lengths, respectively, at 2.5 Hz. Effects on beat-to-beat variability of AP duration (APD) was studied in isolated myocytes. Short-term variability was significantly decreased by both GS and mexiletine (average reduction of 42% and 24%, respectively) while they caused similar shortening of the APD. The electrophysiological effects of GS are similar to those of mexiletine, but with a somewhat faster offset kinetics of V + max block. However, since GS reduced V+ max and INa,late in the same concentration, the currently accepted view that GS that selectively blocks INa,late has to be questioned and it is suggested that GS should be classified as a class I/B (or I/B + IV) antiarrhythmic agent.


2014 ◽  
Vol 306 (3) ◽  
pp. H455-H461 ◽  
Author(s):  
Antao Luo ◽  
Jihua Ma ◽  
Yejia Song ◽  
Chunping Qian ◽  
Ying Wu ◽  
...  

An increase of cardiac late sodium current ( INa.L) is arrhythmogenic in atrial and ventricular tissues, but the densities of INa.L and thus the potential relative contributions of this current to sodium ion (Na+) influx and arrhythmogenesis in atria and ventricles are unclear. In this study, whole-cell and cell-attached patch-clamp techniques were used to measure INa.L in rabbit left atrial and ventricular myocytes under identical conditions. The density of INa.L was 67% greater in left atrial (0.50 ± 0.09 pA/pF, n = 20) than in left ventricular cells (0.30 ± 0.07 pA/pF, n = 27, P < 0.01) when elicited by step pulses from −120 to −20 mV at a rate of 0.2 Hz. Similar results were obtained using step pulses from −90 to −20 mV. Anemone toxin II (ATX II) increased INa.L with an EC50 value of 14 ± 2 nM and a Hill slope of 1.4 ± 0.1 ( n = 9) in atrial myocytes and with an EC50 of 21 ± 5 nM and a Hill slope of 1.2 ± 0.1 ( n = 12) in ventricular myocytes. Na+ channel open probability (but not mean open time) was greater in atrial than in ventricular cells in the absence and presence of ATX II. The INa.L inhibitor ranolazine (3, 6, and 9 μM) reduced INa.L more in atrial than ventricular myocytes in the presence of 40 nM ATX II. In summary, rabbit left atrial myocytes have a greater density of INa.L and higher sensitivities to ATX II and ranolazine than rabbit left ventricular myocytes.


1995 ◽  
Vol 73 (11) ◽  
pp. 1651-1660 ◽  
Author(s):  
Gwo-Jyh Chang ◽  
Ming-Jai Su ◽  
Pei-Hong Lee ◽  
Shoei-Sheng Lee ◽  
Karin Chiung-Sheue Liu

The mechanisms of the positive inotropic action of a new synthetic tetrahydroisoquinoline compound, SL-1, were investigated in isolated rat cardiac tissues and ventricular myocytes. SL-1 produced a rapidly developing, concentration-dependent positive inotropic response in both atrial and ventricular muscles and a negative chronotropic effect in spontaneously beating right atria. The positive inotropic effect was not prevented by pretreatment with reserpine (3 mg/kg) or the α-adrenoceptor antagonist prazosin (1 μM), but was suppressed by either the β-adrenoceptor antagonist atenolol (3 μM) or the K+ channel blocker 4-aminopyridine (4AP, 1 mM). In the whole-cell recording study, SL-1 increased the plateau level and prolonged the action potential duration in a concentration-dependent manner and decreased the maximum upstroke velocity [Formula: see text] and amplitude of the action potential in isolated rat ventricular myocytes stimulated at 1.0 Hz. On the other hand, SL-1 had little effect on the resting membrane potential, although it caused a slight decrease at higher concentrations. Voltage clamp experiments revealed that the increase of action potential plateau and prolongation of action potential duration were associated with an increase of Ca2+ inward current (ICa) via the activation of β-adrenoceptors and a prominent inhibition of 4AP-sensitive transient outward K+ current (Ito) with an IC50 of 3.9 μM. Currents through the inward rectifier K+ channel (IKl) were also reduced. The inhibition of Ito is characterized by a reduction in peak amplitude and a marked acceleration of current decay but without changes on the voltage dependence of steady-state inactivation. In addition to the inhibition of K+ currents, SL-1 also inhibited the Na+ inward current (INa) with an IC50 of 5.4 μM, which was correlated with the decrease of [Formula: see text]. We conclude that the positive inotropic effect of SL-1 may be due to an increase in Ca2+ current mediated via partial activation of β-adrenoceptors and an inhibition of K+ outward currents and the subsequent prolongation of action potentials.Key words: SL-1, tetrahydroisoquinoline, inotropic and chronotropic action, action potential, Na+, Ca2+, and K+ currents.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Susmita Chakrabarti ◽  
Sandro Yong ◽  
Shin Yoo ◽  
Ling Wu ◽  
Qing Kenneth Wang

The cardiac sodium channel (Na v 1.5) plays a significant role in cardiac physiology and leads to cardiac arrhythmias and sudden death when mutated. Modulation of Na v 1.5 activity can also arise from changes to accessory subunits or proteins. Our laboratory has recently reported that MOG1, a small protein that is highly conserved from yeast to humans, is a co-factor of Na v 1.5. Increased MOG1 expression has been shown to increase Na v 1.5 current density. In adult mouse ventricular myocytes, these two proteins were found to be co-localized at the intercalated discs. Here, we further characterize the regulatory role of MOG1 using the RNA interference technique. Sodium current was recorded in voltage-clamp mode from a holding potential of −100 mV and activated to −20 mV. In 3-day old mouse neonatal ventricular cells transfected with siRNA against mouse MOG1 decreased sodium current densities (pA/pF) compared to control or scramble siRNA treated cells (−10.2±3.3, n=11 vs. −165±16, n=20 or −117.9±11.7, n=11). A similar reduction in sodium current was observed in mammalian expression system consisting of HEK293 cells stably expressing human Na v 1.5, by transfecting siRNAs against either human or mouse MOG1 (−41.7±8.3, n=7 or, −82.6±9.6, n=7 vs. −130.6±11.5, n=7; −111.5±8.5, n=7, respectively). Immunocytochemistry revealed that the expression of MOG1 and Na v 1.5 were decreased in both HEK and neonatal cells when compared to scramble siRNAs or control groups. These results show that MOG1 is an essential co-factor for Na v 1.5 by way of a channel trafficking. Such interactions between MOG1 and Na v 1.5 suggest that early localization of MOG1 on the membrane of neonatal cardiomyocytes may be necessary for proper localization and the distribution of Na v 1.5 during cardiac development. This research has received full or partial funding support from the American Heart Association, AHA National Center.


2007 ◽  
Vol 292 (6) ◽  
pp. H2634-H2642 ◽  
Author(s):  
Rachel J. Jones ◽  
David Jourd'heuil ◽  
John C. Salerno ◽  
Susan M. E. Smith ◽  
Harold A. Singer

Nitric oxide synthase (NOS) expression is regulated transcriptionally in response to cytokine induction and posttranslationally by palmitoylation and trafficking into perinuclear aggresome-like structures. We investigated the effects of multifunctional calcium/calmodulin-dependent protein kinase II protein kinase (CaMKII) on inducible NOS (iNOS) trafficking in cultured rat aortic vascular smooth muscle cells (VSMCs). Immunofluorescence and confocal microscopy demonstrated colocalization of iNOS and CaMKIIδ2 with a perinuclear distribution and concentration in aggresome-like structures identified by colocalization with γ-tubulin. Furthermore, CaMKIIδ2 coimmunoprecipitated with iNOS in a CaMKII activity-dependent manner. Addition of Ca2+-mobilizing stimuli expected to activate CaMKII; a purinergic agonist (UTP) or calcium ionophore (ionomycin) caused a general redistribution of iNOS from cytosolic to membrane and nuclear fractions. Similarly, adenoviral expression of a constitutively active CaMKIIδ2 mutant altered iNOS localization, shifting iNOS from the cytosolic fraction. Suppression of CaMKIIδ2 using an adenovirus expressing a short hairpin, small interfering RNA increased nuclear iNOS localization in resting cells but inhibited ionomycin-induced translocation of iNOS to the nucleus. Following addition of these chronic and acute CaMKII modulators, there were fewer aggresome-like structures containing iNOS. All of the treatments that chronically affected CaMKII activity or expression significantly inhibited iNOS-specific activity following cytokine induction. The results suggest that CaMKIIδ2 may be an important regulator of iNOS trafficking and activity in VSMCs.


Sign in / Sign up

Export Citation Format

Share Document