scholarly journals Mesoporous Silica Nanomaterials: Versatile Nanocarriers for Cancer Theranostics and Drug and Gene Delivery

Pharmaceutics ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 77 ◽  
Author(s):  
Samuel Kesse ◽  
Kofi Boakye-Yiadom ◽  
Belynda Ochete ◽  
Yaw Opoku-Damoah ◽  
Fahad Akhtar ◽  
...  

Mesoporous silica nanomaterials (MSNs) have made remarkable achievements and are being thought of by researchers as materials that can be used to effect great change in cancer therapies, gene delivery, and drug delivery because of their optically transparent properties, flexible size, functional surface, low toxicity profile, and very good drug loading competence. Mesoporous silica nanoparticles (MSNPs) show a very high loading capacity for therapeutic agents. It is well known that cancer is one of the most severe known medical conditions, characterized by cells that grow and spread rapidly. Thus, curtailing cancer is one of the greatest current challenges for scientists. Nanotechnology is an evolving field of study, encompassing medicine, engineering, and science, and it has evolved over the years with respect to cancer therapy. This review outlines the applications of mesoporous nanomaterials in the field of cancer theranostics, as well as drug and gene delivery. MSNs employed as therapeutic agents, as well as their importance and future prospects in the ensuing generation of cancer theranostics and drug and therapeutic gene delivery, are discussed herein. Thus, the use of mesoporous silica nanomaterials can be seen as using one stone to kill three birds.

2018 ◽  
Vol 8 (2) ◽  
pp. 165-177 ◽  
Author(s):  
Yixian Zhou ◽  
Guilan Quan ◽  
Qiaoli Wu ◽  
Xiaoxu Zhang ◽  
Boyi Niu ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Thashini Moodley ◽  
Moganavelli Singh

With increasing incidence and mortality rates, cancer remains one of the most devastating global non-communicable diseases. Restricted dosages and decreased bioavailability, often results in lower therapeutic outcomes, triggering the development of resistance to conventionally used drug/gene therapeutics. The development of novel therapeutic strategies using multimodal nanotechnology to enhance specificity, increase bioavailability and biostability of therapeutics with favorable outcomes is critical. Gated vectors that respond to endogenous or exogenous stimuli, and promote targeted tumor delivery without prematurely cargo loss are ideal. Mesoporous silica nanoparticles (MSNs) are effective delivery systems for a variety of therapeutic agents in cancer therapy. MSNs possess a rigid framework and large surface area that can incorporate supramolecular constructs and varying metal species that allow for stimuli-responsive controlled release functions. Its high interior loading capacity can incorporate combination drug/gene therapeutic agents, conferring increased bioavailability and biostability of the therapeutic cargo. Significant advances in the engineering of MSNs structural and physiochemical characteristics have since seen the development of nanodevices with promising in vivo potential. In this review, current trends of multimodal MSNs being developed and their use in stimuli-responsive passive and active targeting in cancer therapy will be discussed, focusing on light, redox, pH, and temperature stimuli.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 288 ◽  
Author(s):  
Thashini Moodley ◽  
Moganavelli Singh

There is a need for the improvement of conventional cancer treatment strategies by incorporation of targeted and non-invasive procedures aimed to reduce side-effects, drug resistance, and recurrent metastases. The anti-cancer drug, 5-fluorouracil (5-FU), is linked to a variety of induced-systemic toxicities due to its lack of specificity and potent administration regimens, necessitating the development of delivery vehicles that can enhance its therapeutic potential, while minimizing associated side-effects. Polymeric mesoporous silica nanoparticles (MSNs) have gained popularity as delivery vehicles due to their high loading capacities, biocompatibility, and good pharmacokinetics. MSNs produced in this study were functionalized with the biocompatible polymers, chitosan, and poly(ethylene)glycol to produce monodisperse NPs of 36–65 nm, with a large surface area of 710.36 m2/g, large pore volume, diameter spanning 9.8 nm, and a favorable zeta potential allowing for stability and enhanced uptake of 5-FU. Significant drug loading (0.15–0.18 mg5FU/mgmsn), controlled release profiles (15–65%) over 72 hours, and cell specific cytotoxicity in cancer cells (Caco-2, MCF-7, and HeLa) with reduced cell viability (≥50%) over the non-cancer (HEK293) cells were established. Overall, these 5FU-MSN formulations have been shown to be safe and effective delivery systems in vitro, with potential for in vivo applications.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1067
Author(s):  
Elham Rastegari ◽  
Yu-Jer Hsiao ◽  
Wei-Yi Lai ◽  
Yun-Hsien Lai ◽  
Tien-Chun Yang ◽  
...  

The efficient and safe delivery of therapeutic drugs, proteins, and nucleic acids are essential for meaningful therapeutic benefits. The field of nanomedicine shows promising implications in the development of therapeutics by delivering diagnostic and therapeutic compounds. Nanomedicine development has led to significant advances in the design and engineering of nanocarrier systems with supra-molecular structures. Smart mesoporous silica nanoparticles (MSNs), with excellent biocompatibility, tunable physicochemical properties, and site-specific functionalization, offer efficient and high loading capacity as well as robust and targeted delivery of a variety of payloads in a controlled fashion. Such unique nanocarriers should have great potential for challenging biomedical applications, such as tissue engineering, bioimaging techniques, stem cell research, and cancer therapies. However, in vivo applications of these nanocarriers should be further validated before clinical translation. To this end, this review begins with a brief introduction of MSNs properties, targeted drug delivery, and controlled release with a particular emphasis on their most recent diagnostic and therapeutic applications.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3202
Author(s):  
Sumita Swar ◽  
Veronika Máková ◽  
Ivan Stibor

Our study was focused on the synthesis of selective mesoporous silica nanoparticles (MSNs: MCM-41, MCM-48, SBA-15, PHTS, MCF) that are widely studied for drug delivery. The resulting mesoporous surfaces were conveniently prepared making use of verified synthetic procedures. The MSNs thus obtained were characterized by Brunauer-Emmett-Teller (BET) analysis and scanning electron microscopy (SEM). The selected MSNs with various pore diameters and morphologies were examined to evaluate the capability of L-DOPA drug loading and release. L-DOPA is a well-known drug for Parkinson’s disease. The L-DOPA drug loading and release profiles were measured by UV-VIS spectroscopy and SBA-15 was proved to be the most effective amongst all the different types of tested mesoporous silica materials as L-DOPA drug vehicle.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1770 ◽  
Author(s):  
Cuiyan Han ◽  
Haitao Huang ◽  
Yan Dong ◽  
Xiaoyu Sui ◽  
Baiyu Jian ◽  
...  

Mesoporous carriers have been extensively applied to improve the dissolution velocity and bioavailability of insoluble drugs. The goal of this work was to compare the drug-loading efficiency (LE) and drug-dissolution properties of mesoporous silica nanoparticles (MSN) and mesoporous carbon nanoparticles (MCN) as drug vectors oral delivery of water-insoluble drugs. For this purpose, MSN and MCN with similar particle size, surface area, and mesoporous diameter were prepared to precisely evaluate the effects of different textures on the drug-loading and dissolution behavior of insoluble drugs. Carvedilol (CAR), a Bio-pharmaceutic Classification System (BCS) class II drug, was loaded in the MSN and MCN by the solvent adsorption method and solvent evaporation method with different carrier–drug ratios. The carboxylated MCN (MCN–COOH) had a higher LE for CAR than MSN for both the two loading methods due to the strong adsorption effect and π–π stacking force with CAR. In vitro drug dissolution study showed that both MSN and MCN-COOH could improve the dissolution rate of CAR compared with the micronized CAR. In comparison to MSN, MCN-COOH displayed a slightly slower dissolution profile, which may be ascribed to the strong interaction between MCN-COOH and CAR. Observation of cell cytotoxicity and gastrointestinal mucosa irritation demonstrated the good biocompatibility of both MSN and MCN–COOH. The present study encourages further research of different carriers to determine their potential application in oral administration.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1832 ◽  
Author(s):  
Weili Peng ◽  
Zeping Zhang ◽  
Minzhi Rong ◽  
Mingqiu Zhang

A kind of core-shell hybrid nanoparticle comprised of a hollow mesoporous silica nanoparticles (HMS) core and a copolymer shell bearing N-(3,4-dihydroxyphenethyl) methacrylamide (DMA) and N-isopropylacrylamide (NIPAM) as responsive moieties was prepared. Moreover, the factors that could impact the surface morphology and hierarchical porous structure were discussed. In the presence of Fe3+, catechol-Fe3+ complexes were formed to achieve pH-responsive polymer shell, combining with thermal-sensitiveness of poly(N-isopropylacrylamide). Doxorubicin (DOX) was applied as a model drug and the behaviors of its loading/release behaviors were investigated to prove the idea. The results exhibited a significant drug loading capacity of 8.6% and embed efficiency of 94.6% under 1 mg ml–1 DOX/PBS solution. In fact, the loading capacity of drug can be easily improved to as high as 28.0% by increasing the DOX concentration. The vitro cytotoxicity assay also indicated that the as-prepared nanoparticles have no significant cytotoxicity on RAW 264.7 cells. The in vitro experiment showed that the cumulative release of DOX was obviously dependent on the temperature and pH values. This pH/temperature-sensitive hollow mesoporous silica nanosphere is expected to have potential applications in controlled drug release.


Sign in / Sign up

Export Citation Format

Share Document