scholarly journals Therapeutic Cancer Vaccination with Ex Vivo RNA-Transfected Dendritic Cells—An Update

Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 92 ◽  
Author(s):  
Jan Dörrie ◽  
Niels Schaft ◽  
Gerold Schuler ◽  
Beatrice Schuler-Thurner

Over the last two decades, dendritic cell (DC) vaccination has been studied extensively as active immunotherapy in cancer treatment and has been proven safe in all clinical trials both with respect to short and long-term side effects. For antigen-loading of dendritic cells (DCs) one method is to introduce mRNA coding for the desired antigens. To target the whole antigenic repertoire of a tumor, even the total tumor mRNA of a macrodissected biopsy sample can be used. To date, reports have been published on a total of 781 patients suffering from different tumor entities and HIV-infection, who have been treated with DCs loaded with mRNA. The majority of those were melanoma patients, followed by HIV-infected patients, but leukemias, brain tumors, prostate cancer, renal cell carcinomas, pancreatic cancers and several others have also been treated. Next to antigen-loading, mRNA-electroporation allows a purposeful manipulation of the DCs’ phenotype and function to enhance their immunogenicity. In this review, we intend to give a comprehensive summary of what has been published regarding clinical testing of ex vivo generated mRNA-transfected DCs, with respect to safety and risk/benefit evaluations, choice of tumor antigens and RNA-source, and the design of better DCs for vaccination by transfection of mRNA-encoded functional proteins.

2016 ◽  
Vol 5 (11) ◽  
pp. e1232237 ◽  
Author(s):  
Jon Amund Kyte ◽  
Steinar Aamdal ◽  
Svein Dueland ◽  
Stein Sæbøe-Larsen ◽  
Else Marit Inderberg ◽  
...  

Author(s):  
Bryan Romito ◽  
Joseph Meltzer

The primary goal of this chapter is to provide the reader with an overview of basic renal physiology and function and to review the identification, pathogenesis, and treatment of acute kidney injury following cardiac surgery. Particular focus will be directed toward the diagnostic criteria for acute kidney injury, short- and long-term impacts on patient outcomes, role of novel biomarkers, mechanisms of acute renal injury, general management principles, preventative strategies, and the influence of anesthetic and surgical techniques on its development. The content of this chapter will serve to underscore a particularly harmful but likely underappreciated problem affecting patients in the cardiothoracic critical care setting.


Blood ◽  
1998 ◽  
Vol 92 (4) ◽  
pp. 1131-1141 ◽  
Author(s):  
J.F. Tisdale ◽  
Y. Hanazono ◽  
S.E. Sellers ◽  
B.A. Agricola ◽  
M.E. Metzger ◽  
...  

Abstract The possibility of primitive hematopoietic cell ex vivo expansion is of interest for both gene therapy and transplantation applications. The engraftment of autologous rhesus peripheral blood (PB) progenitors expanded 10 to 14 days were tracked in vivo using genetic marking. Stem cell factor (SCF)/granulocyte colony-stimulating factor (G-CSF)–mobilized and CD34-enriched PB cells were divided into two equal aliquots and transduced with one of two retroviral vectors carrying the neomycin-resistance gene (neo) for 4 days in the presence of interleukin-3 (IL-3), IL-6, and SCF in the first 5 animals, IL-3/IL-6/SCF/Flt-3 ligand (FLT) in 2 subsequent animals, or IL-3/IL-6/SCF/FLT plus an autologous stromal monolayer (STR) in the final 2. At the end of transduction period, one aliquot (nonexpanded) from each animal was frozen, whereas the other was expanded under the same conditions but without vector for a total of 14 days before freezing. After total body irradiation, both the nonexpanded and expanded transduced cells were reinfused. Despite 5- to 13-fold higher cell and colony-forming unit (CFU) doses from the expanded fraction of marked cells, there was greater short- and long-term marking from the nonexpanded cells in all animals. In animals receiving cells transduced and expanded in the presence of IL-3/IL-6/SCF/FLT, engraftment by the marked expanded cells was further diminished. This discrepancy was even more pronounced in the animals who received cells transduced and expanded in the presence of FLT and autologous stroma, with no marking detectable from the expanded cells. Despite lack of evidence for expansion of engrafting cells, we found that the addition of FLT and especially STR during the initial brief transduction period increased engraftment with marked cells into a clinically relevant range. Levels of marked progeny cells originating from the nonexpanded aliqouts were significantly higher than that seen in previous 4 animals receiving cells transduced in the presence of IL-3/IL-6/SCF, with levels of 10% to 20% confirmed by Southern blotting from the nonexpanded IL-3/IL-6/SCF/FLT/STR graft compared with 0.01% in the original IL-3/IL-6/SCF cohort. These results suggest that, although expansion of PB progenitors is feasible ex vivo, their contribution towards both short- and long-term engraftment is markedly impaired. However, a brief transduction in the presence of specific cytokines and stromal support allows engraftment with an encouraging number of retrovirally modified cells. This is a US government work. There are no restrictions on its use.


2020 ◽  
Vol 55 (10) ◽  
pp. 927-943 ◽  
Author(s):  
Giovanni Marasco ◽  
Matteo Serenari ◽  
Matteo Renzulli ◽  
Luigina Vanessa Alemanni ◽  
Benedetta Rossini ◽  
...  

Abstract Changes in body composition are associated with poor outcomes in cancer patients including hepatocellular carcinoma (HCC). Sarcopenia, defined as the loss of skeletal muscle mass, quality and function, has been associated with a higher rate of complications and recurrences in patients with cirrhosis and HCC. The assessment of patient general status before HCC treatment, including the presence of sarcopenia, is a key-point for achieving therapy tolerability and to avoid short- and long-term complications leading to poor patients’ survival. Thus, we aimed to review the current literature evaluating the role of sarcopenia assessment related to HCC treatments and to critically provide the clinicians with the most recent and valuable evidence. As a result, sarcopenia can be predictive of poor outcomes in patients undergoing liver resection, transplantation and systemic therapies, offering the chance to clinicians to improve the muscular status of these patients, especially those with high-grade sarcopenia at high risk of mortality. Further studies are needed to clarify the predictive value of sarcopenia in other HCC treatment settings and to evaluate its role as an additional staging tool for identifying the most appropriate treatment. Besides, interventional studies aiming at increasing the skeletal muscle mass for reducing complications and increasing the survival in patients with HCC are needed.


2019 ◽  
Vol 20 (12) ◽  
pp. 3012 ◽  
Author(s):  
Beatriz Vidal-Villegas ◽  
Johnny Di Pierdomenico ◽  
Juan A Miralles de Imperial-Ollero ◽  
Arturo Ortín-Martínez ◽  
Francisco M Nadal-Nicolás ◽  
...  

We studied short- and long-term effects of intravitreal injection of N-methyl-d-aspartate (NMDA) on melanopsin-containing (m+) and non-melanopsin-containing (Brn3a+) retinal ganglion cells (RGCs). In adult SD-rats, the left eye received a single intravitreal injection of 5µL of 100nM NMDA. At 3 and 15 months, retinal thickness was measured in vivo using Spectral Domain-Optical Coherence Tomography (SD-OCT). Ex vivo analyses were done at 3, 7, or 14 days or 15 months after damage. Whole-mounted retinas were immunolabelled for brain-specific homeobox/POU domain protein 3A (Brn3a) and melanopsin (m), the total number of Brn3a+RGCs and m+RGCs were quantified, and their topography represented. In control retinas, the mean total numbers of Brn3a+RGCs and m+RGCs were 78,903 ± 3572 and 2358 ± 144 (mean ± SD; n = 10), respectively. In the NMDA injected retinas, Brn3a+RGCs numbers diminished to 49%, 28%, 24%, and 19%, at 3, 7, 14 days, and 15 months, respectively. There was no further loss between 7 days and 15 months. The number of immunoidentified m+RGCs decreased significantly at 3 days, recovered between 3 and 7 days, and were back to normal thereafter. OCT measurements revealed a significant thinning of the left retinas at 3 and 15 months. Intravitreal injections of NMDA induced within a week a rapid loss of 72% of Brn3a+RGCs, a transient downregulation of melanopsin expression (but not m+RGC death), and a thinning of the inner retinal layers.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3471-3471
Author(s):  
Sarah Vaiselbuh ◽  
Jeffrey Michael Lipton ◽  
Johnson M. Liu

Abstract CD133 (prominin-1) is the first in a class of novel pentaspan membrane proteins identified in humans and mice, and studies have since confirmed the utility of CD133 as a marker of stem cells with hematopoietic and non-hematopoietic lineage potential. A number of human transplantation studies have documented hematopoietic reconstitution from CD133+ stem cells from mismatched donors, with a suggested advantage over standard grafts in avoidance of graft versus host disease. We have developed a novel hematopoietic culture system (Long-Term Stem Cell Culture or LTSCC) to investigate the potential of human mesenchymal stem cells (MSC) to form stroma that can support short- and long-term hematopoiesis derived from cord blood (CB)-derived CD133+ cells. In addition, we analyzed the effect of stromal derived factor-1 (SDF-1/CXCL12) on survival and short-and long-term colony-forming capacity of CD133+ hematopoiesis. LTSCC induced stroma-like changes in the MSC feeder layer, with adipocyte formation, thought to be needed for formation of stem cell niches, and supported long-term (>9 weeks) survival of CB-CD133+ cells. Cobblestone areas of active CD133-derived hematopoiesis were seen in LTSCC for up to 9 weeks of culture. SDF-1/CXCL12 acted as a survival factor for CB-CD133+ cells and induced a significant ex vivo cell expansion at weeks 3 and 4 of LTSCC (maximal 500-fold increase), while maintaining the capacity for CFU-Mix and BFU-E colony formation up to 7 weeks. Long-term hematopoiesis was assessed by enumeration of long-term culture initiating cells (LTC-IC). When SDF-1/CXCL12 was added to LTSCC, we found a significant increase in LTC-IC: 0.3% (+SDF-1/CXCL12) vs. 0.05% (-SDF-1/CXCL12). Finally, homing capacity, as defined by SDF-1/CXCL12-induced adhesion and migration of CB-CD133+ cells, was maintained and even increased during the first 3 weeks of LTSCC. In summary, MSC can be maintained in LTSCC medium, and this simplified feeder layer is able to provide niches for cobblestone area forming cells derived from CB-CD133+ cells. SDF-1/CXCL12 is critical to support the survival and expansion of CD133+ cells, either directly or indirectly by paracrinesignaled retention of CD133+ cells in contact with specialized MSC niches. We suggest that expansion of CD133+ cells from cord blood may be useful in clinical transplantation limited by insufficient numbers of stem cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2431-2431 ◽  
Author(s):  
Tony Peled ◽  
Hadas Shoham ◽  
Dorit Aschengrau ◽  
Dima Yackoubov ◽  
Gabi Frei ◽  
...  

Abstract Abstract 2431 Poster Board II-408 Nicotinamide (NAM), is a form of VitB3 that recognized and inhibits SIRT1, the human ortholog of the yeast Sir2 class III NAD+-dependent histone deacetylase. We have previously demonstrated that NAM inhibits in vitro differentiation and enhances expansion, migration, homing and NOD/SCID engraftment efficacy of cord blood (CB)-derived CD34+ cells cultured with cytokines. In the current study, the in vivo function of ex vivo cultured cells with NAM was tested in a congenic mice model (BALB/C, CD45.1/CD45.2) for BM transplantation. Purified CD117+ BM cells from BALB/C CD45.1 mice were cultured with a combination of 4 cytokines (FLT3, SCF, TPO, IL-6, 50 ng/ml each), with and without 0.5mM NAM for three weeks. Numbers of CFUc, CD117+ and CD117+Lin- cells were significantly (p < 0.05) higher in cultures treated with NAM as compared with cultured treated with cytokines alone. Non-cultured, freshly purified CD117+ cells (1000 and 2500 cells/mice) and their total progeny following expansion with or without NAM were transplanted into ablated (1000 Rad) CD45.2 mice (n = 10/cohort), 24h post irradiation (Fig 1). Three months post transplantation, all the mice in the control group (non-transplanted) died. The percent survival of mice transplanted with cells cultured with cytokines and NAM was remarkably higher over the survival of mice in the cohort transplanted with cells cultured with cytokines alone or non-cultured cells (Fig 1). FACS analysis (CD45.1-donor / CD45.2-host) of peripheral blood from mice transplanted with NAM cultured cells show 80% donor cell chimerism (CD45.1), 3 and 6 months post transplantation. Percent of donor derived Gr-1+ and CD3+ cells were similar in mice transplanted with non-cultured or NAM cultured cells. Percentages of donor cell chimerism (CD45.1) in secondary mice transplanted with total BM cells derived from primary recipients originally transplanted with non-cultured and NAM cultured cells were 47 and 73, respectively, 6 weeks after the secondary transplantation. In a different experiment, to follow time to engraftment during the first month post transplantation, mice transplanted with non-cultured cells or cells cultured with cytokines and NAM (n = 10/cohort) were bled at weekly intervals and peripheral blood samples were counted for WBC and analyzed by the FACS to determine donor cell chimerism and lineage engraftment. The results show accelerated engraftment (Fig 2) and higher levels of donor cell chimerism (Fig 3) in the cohort transplanted with NAM cultured cells relative to the cohort transplanted with non-cultured cells. Number of granulocytes, T, NK and B cells during the first month post transplant were also significantly (p<0.05) higher in mice transplanted with cells cultured with cytokines and NAM relative to their levels in mice transplanted with non-cultured cells. The results obtained in the congenic mice model for BMT suggest that NAM promotes expansion in ex vivo cultures of short and long-term repopulating cells, as demonstrated by accelerated donor derived engraftment during the first month post transplantation, higher survival of mice, sustained donor cell chimerism 6 month post transplantation and successful reconstitution of secondary recipients. NAM is thus a novel molecule that may be used to stimulate and expand hematopoietic repopulating cells, fasten post transplant engraftment and hopefully improve transplantation outcome. Current studies are designed to elucidate NAM mode of action. Fig 1: Three month survival Fig 1:. Three month survival Fig 2: Short-term Engrafoment Fig: 3 Percentage of Donor Chimerism Fig 2:. Short-term Engrafoment Fig: 3 Percentage of Donor Chimerism Disclosures: Peled: Gamida-Cell: Employment, Equity Ownership. Shoham:Gamida Cell: Employment. Aschengrau:Gamida Cell: Employment. Yackoubov:Gamida Cell: Employment. Frei:Gamida Cell: Employment. Nagler:Gamida Cell: Arnon Nagler, Consultancy. Peled:Gamida Cell: Consultancy.


Hepatology ◽  
2009 ◽  
Vol 50 (6) ◽  
pp. 1936-1945 ◽  
Author(s):  
Eiji Kakazu ◽  
Yoshiyuki Ueno ◽  
Yasuteru Kondo ◽  
Koji Fukushima ◽  
Masaaki Shiina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document