scholarly journals Quality by Design Optimization of Cold Sonochemical Synthesis of Zidovudine-Lamivudine Nanosuspensions

Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 367 ◽  
Author(s):  
Bwalya A. Witika ◽  
Vincent J. Smith ◽  
Roderick B. Walker

Lamivudine (3TC) and zidovudine (AZT) are antiviral agents used to manage HIV/AIDS infection. The compounds require frequent dosing, exhibit unpredictable bioavailability and a side effect profile that includes hepato- and haema-toxicity. A novel pseudo one-solvent bottom-up approach and Design of Experiments using sodium dodecyl sulphate (SDS) and α-tocopheryl polyethylene glycol succinate 1000 (TPGS 1000) to electrosterically stablize the nano co-crystals was used to develop, produce and optimize 3TC and AZT nano co-crystals. Equimolar solutions of 3TC in surfactant dissolved in de-ionised water and AZT in methanol were rapidly injected into a vessel and sonicated at 4 °C. The resultant suspensions were characterized using a Zetasizer and the particle size, polydispersity index and Zeta potential determined. Optimization of the nanosuspensions was conducted using a Central Composite Design to produce nano co-crystals with specific identified and desirable Critical Quality Attributes including particle size (PS) < 1000 nm, polydispersity index (PDI) < 0.500 and Zeta potential (ZP) < −30mV. Further characterization was undertaken using Fourier Transform infrared spectroscopy, energy dispersive X-ray spectroscopy, differential scanning calorimetry, powder X-ray diffraction and transmission electron microscopy. In vitro cytotoxicity studies revealed that the optimized nano co-crystals reduced the toxicity of AZT and 3TC to HeLa cells.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 182 ◽  
Author(s):  
Bwalya A. Witika ◽  
Vincent J. Smith ◽  
Roderick B. Walker

Lamivudine (3TC) and zidovudine (AZT) are antiviral agents used orally to manage HIV/AIDS infection. A pseudo one-solvent bottom-up approach was used to develop and produce nano co-crystals of 3TC and AZT. Equimolar amounts of 3TC dissolved in de-ionized water and AZT in methanol were rapidly injected into a pre-cooled vessel and sonicated at 4 °C. The resultant suspensions were characterized using a Zetasizer. The particle size, polydispersity index and Zeta potential were elucidated. Further characterization was undertaken using powder X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and energy dispersive X-ray spectroscopy scanning electron microscopy. Different surfactants were assessed for their ability to stabilize the nano co-crystals and for their ability to produce nano co-crystals with specific and desirable critical quality attributes (CQA) including particle size (PS) < 1000 nm, polydispersity index (PDI) < 0.500 and Zeta potential (ZP) < −30 mV. All surfactants produced co-crystals in the nanometer range. The PDI and PS are concentration-dependent for all nano co-crystals manufactured while only ZP was within specification when sodium dodecyl sulfate was used in the process.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1485
Author(s):  
Yogeeta O. Agrawal ◽  
Umesh B. Mahajan ◽  
Vinit V. Agnihotri ◽  
Mayur S. Nilange ◽  
Hitendra S. Mahajan ◽  
...  

Ezetimibe (EZE) possesses low aqueous solubility and poor bioavailability and in addition, its extensive hepatic metabolism supports the notion of developing a novel carrier system for EZE. Ezetimibe was encapsulated into nanostructured lipid carriers (EZE-NLCs) via a high pressure homogenization technique (HPH). A three factor, two level (23) full factorial design was employed to study the effect of amount of poloxamer 188 (X1), pressure of HPH (X2) and number of HPH cycle (X3) on dependent variables. Particle size, polydispersity index (PDI), % entrapment efficiency (%EE), zeta potential, drug content and in-vitro drug release were evaluated. The optimized formulation displays pragmatic inferences associated with particle size of 134.5 nm; polydispersity index (PDI) of 0.244 ± 0.03; zeta potential of −28.1 ± 0.3 mV; % EE of 91.32 ± 1.8% and % CDR at 24-h of 97.11%. No interaction was observed after X-ray diffraction (XRD) and differential scanning calorimetry (DSC) studies. EZE-NLCs (6 mg/kg/day p.o.) were evaluated in the high fat diet fed rats induced hyperlipidemia in comparison with EZE (10 mg/kg/day p.o.). Triglyceride, HDL-c, LDL-c and cholesterol were significantly normalized and histopathological evaluation showed normal structure and architecture of the hepatocytes. The results demonstrated the superiority of EZE-NLCs in regard to bioavailability enhancement, dose reduction and dose-dependent side effects.


Crystals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 286 ◽  
Author(s):  
Shadab Md ◽  
Bradon Kit ◽  
Sumeet Jagdish ◽  
Dexter David ◽  
Manisha Pandey ◽  
...  

Zerumbone extracted from the volatile oil of rhizomes available from the Zinigiber zerumbet has promising pharmacological activity. However, it has poor aqueous solubility and dissolution characteristics. To improve this, a nanosuspension formulation of zerumbone was developed. Nanosuspensions were formulated using high-pressure homogenization (HPH) with sodium dodecyl sulphate (SDS) and hydroxypropylmethylcellulose (HPMC) as stabilizers; the formulation was optimized and freeze dried. The optimized nanosuspension product was evaluated using an optical light microscope, photon correlation spectroscopy (PCS), polydispersity index, zeta potential, SEM, differential scanning calorimetry (DSC) and FT-IR. The physical stability of the nanosuspensions was evaluated for 30 days at 4 °C, 25 °C, and 37 °C. To validate the theoretical benefit of the increased surface area, we determined an in vitro saturation solubility and dissolution profile. The mean particle size, polydispersity index and zeta potential of the zerumbone nanosuspensions stabilized by SDS versus HPMC were found to be 211 ± 27 nm vs. 398 ± 3.5 nm, 0.39 ± 0.06 vs. 0.55 ± 0.004, and −30.86 ± 2.3 mV vs. −3.37 ± 0.002 mV, respectively. The in vitro saturation solubility and dissolution revealed improved solubility for the zerumbone nanosuspension. These results suggested that the nanosuspensionlization improves the saturation solubility and dissolution profile of zerumbone, which may facilitate its use as a therapeutic agent in the future.


2020 ◽  
Vol 26 (14) ◽  
pp. 1543-1555 ◽  
Author(s):  
Meltem E. Durgun ◽  
Emine Kahraman ◽  
Sevgi Güngör ◽  
Yıldız Özsoy

Background: Topical therapy is preferred for the management of ocular fungal infections due to its superiorities which include overcoming potential systemic side effects risk of drugs, and targeting of drugs to the site of disease. However, the optimization of effective ocular formulations has always been a major challenge due to restrictions of ocular barriers and physiological conditions. Posaconazole, an antifungal and highly lipophilic agent with broad-spectrum, has been used topically as off-label in the treatment of ocular fungal infections due to its highly lipophilic character. Micellar carriers have the potential to improve the solubility of lipophilic drugs and, overcome ocular barriers. Objective: In the current study, it was aimed optimization of posaconazole loaded micellar formulations to improve aqueous solubility of posaconazole and to characterize the formulations and to investigate the physical stability of these formulations at room temperature (25°C, 60% RH), and accelerated stability (40°C, 75% RH) conditions. Method: Micelles were prepared using a thin-film hydration method. Pre-formulation studies were firstly performed to optimize polymer/surfactant type and to determine their concentration in the formulations. Then, particle size, size distribution, and zeta potential of the micellar formulations were measured by ZetaSizer Nano-ZS. The drug encapsulation efficiency of the micelles was quantified by HPLC. The morphology of the micelles was depicted by AFM. The stability of optimized micelles was evaluated in terms of particle size, size distribution, zeta potential, drug amount and pH for 180 days. In vitro release studies were performed using Franz diffusion cells. Results: Pre-formulation studies indicated that single D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), a combination of it and Pluronic F127/Pluronic F68 are capable of formation of posaconazole loaded micelles at specific concentrations. Optimized micelles with high encapsulation efficiency were less than 20 nm, approximately neutral, stable, and in aspherical shape. Additionally, in vitro release data showed that the release of posaconazole from the micelles was higher than that of suspension. Conclusion: The results revealed that the optimized micellar formulation of posaconazole offers a potential approach for topical ocular administration.


2011 ◽  
Vol 83 (11) ◽  
pp. 2027-2040 ◽  
Author(s):  
Neralakere Ramanna Ravikumara ◽  
Basavaraj Madhusudhan

In this study, tamoxifen citrate-loaded chitosan nanoparticles (tamoxcL-ChtNPs) and tamoxifen citrate-free chitosan nanoparticles (tamoxcF-ChtNPs) were prepared by an ionic gelation (IG) method. The physicochemical properties of the nanoparticles were analyzed for particle size, zeta (ζ) potential, and other characteristics using photon correlation spectroscopy (PCS), zeta phase analysis light scattering (PALS), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and differential scanning calorimetry (DSC). The variation in particle size was assessed by changing the concentration of chitosan, pentasodium tripolyphosphate (TPP), and the pH of the solution. The optimized tamoxcL-ChtNPs showed mean diameter of 187 nm, polydispersity of 0.125, and ζ-potential of +19.1 mV. The encapsulation efficiency (EE) of tamoxifen citrate (tamoxc) increased at higher concentrations, and release of tamoxc from the chitosan matrix displayed controlled biphasic behavior. Those tamoxcL-ChtNPs tested for chemosensitivity showed dose- and time-dependent antiproliferative activity of tamoxc. Further, tamoxcL-ChtNPs were found to be hemocompatible with human red blood cells (RBCs) and safe by in vitro cytotoxicity tests, suggesting that they offer promise as drug delivery systems in therapy.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 129
Author(s):  
Hassan Shah ◽  
Asadullah Madni ◽  
Muhammad Muzamil Khan ◽  
Fiaz-ud-Din Ahmad ◽  
Nasrullah Jan ◽  
...  

The current study aimed to develop pH-responsive cisplatin-loaded liposomes (CDDP@PLs) via the thin film hydration method. Formulations with varied ratios of dioleoyl phosphatidylethanolamine (DOPE) to cholesteryl hemisuccinate (CHEMS) were investigated to obtain the optimal particle size, zeta potential, entrapment efficiency, in vitro release profile, and stability. The particle size of the CDDP@PLs was in the range of 153.2 ± 3.08–206.4 ± 2.26 nm, zeta potential was −17.8 ± 1.26 to −24.6 ± 1.72, and PDI displayed an acceptable size distribution. Transmission electron microscopy revealed a spherical shape with ~200 nm size. Fourier transform infrared spectroscopic analysis showed the physicochemical stability of CDDP@PLs, and differential scanning calorimetry analysis showed the loss of the crystalline nature of cisplatin in liposomes. In vitro release study of CDDP@PLs at pH 7.4 depicted the lower release rate of cisplatin (less than 40%), and at a pH of 6.5, an almost 65% release rate was achieved compared to the release rate at pH 5.5 (more than 80%) showing the tumor-specific drug release. The cytotoxicity study showed the improved cytotoxicity of CDDP@PLs compared to cisplatin solution in MDA-MB-231 and SK-OV-3 cell lines, and fluorescence microscopy also showed enhanced cellular internalization. The acute toxicity study showed the safety and biocompatibility of the developed carrier system for the potential delivery of chemotherapeutic agents. These studies suggest that CDDP@PLs could be utilized as an efficient delivery system for the enhancement of therapeutic efficacy and to minimize the side effects of chemotherapy by releasing cisplatin at the tumor site.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 328 ◽  
Author(s):  
Zhuang Ding ◽  
Lili Wang ◽  
Yangyang Xing ◽  
Yanna Zhao ◽  
Zhengping Wang ◽  
...  

Celecoxib (CLX), a selective COX-2 inhibitor, is a biopharmaceutics classification system (BCS) class II drug with its bioavailability being limited by thepoor aqueoussolubility. The purpose of this study was to develop and optimize CLX nanocrystalline(CLX-NC) solid dispersion prepared by the wet medium millingtechnique combined with lyophilizationto enhance oral bioavailability. In formulation screening, the resulting CLX-NC usingpolyvinylpyrrolidone (PVP) VA64 and sodiumdodecyl sulfate (SDS) as combined stabilizers showed the minimum particle size and a satisfactory stability. The formulation and preparation processwere further optimized by central composite experimentaldesign with PVP VA64 concentration (X1), SDS concentration (X2) and milling times (X3) as independent factors and particle size (Y1), polydispersity index (PDI, Y2) and zeta potential (Y3) as response variables. The optimal condition was determined as a combination of 0.75% PVP VA64, 0.11% SDS with milling for 90 min.The particle size, PDI and zeta potential of optimized CLX-NC were found to be 152.4 ± 1.4 nm, 0.191 ± 0.012 and −34.4 ± 0.6 mV, respectively. The optimized formulation showed homogeneous rod-like morphology as observed by scanning electron microscopy and was in a crystalline state as determined by differential scanning calorimetry and powder X-ray diffraction. In a storage stability study, optimized CLX-NC exhibited an excellent physical stability during six months’ storage at both the refrigeration and room conditions. In vivo pharmacokinetic research in Sprague-Dawley ratsdisplayed that Cmax and AUC0–∞ of CLX-NC were increased by 2.9 and 3.1 fold, compared with physical mixture. In this study, the screening and optimizing strategy of CLX-NC formulation represents a commercially viable approach forenhancing the oral bioavailability of CLX.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 250
Author(s):  
Evren Gundogdu ◽  
Emine-Selin Demir ◽  
Meliha Ekinci ◽  
Emre Ozgenc ◽  
Derya Ilem-Ozdemir ◽  
...  

Imatinib (IMT) is a tyrosine kinase enzyme inhibitor and extensively used for the treatment of gastrointestinal stromal tumors (GISTs). A nanostructured lipid carrier system (NLCS) containing IMT was developed by using emulsification–sonication methods. The characterization of the developed formulation was performed in terms of its particle size, polydispersity index (PDI), zeta potential, entrapment efficiency, loading capacity, sterility, syringeability, stability, in vitro release kinetics with mathematical models, cellular uptake studies with flow cytometry, fluorescence microscopy and cytotoxicity for CRL-1739 cells. The particle size, PDI, loading capacity and zeta potential of selected NLCS (F16-IMT) were found to be 96.63 ± 1.87 nm, 0.27 ± 0.15, 96.49 ± 1.46% and −32.7 ± 2.48 mV, respectively. F16-IMT was found to be stable, thermodynamic, sterile and syringeable through an 18 gauze needle. The formulation revealed a Korsmeyer–Peppas drug release model of 53% at 8 h, above 90% of cell viability, 23.61 µM of IC50 and induction of apoptosis in CRL-1739 cell lines. In the future, F16-IMT can be employed to treat GISTs. A small amount of IMT loaded into the NLCSs will be better than IMT alone for therapy for GISTs. Consequently, F16-IMT could prove to be useful for effective GIST treatment.


Author(s):  
Sanjeevani S Deshkar ◽  
Kiran G Sonkamble ◽  
Jayashri G Mahore

Objective: The study aims at the formulation and optimization of gemfibrozil (Gem) nanosuspension (NS) for improving its solubility and dissolution rate.Method: Gem NS was prepared by precipitation-ultrasonication method using ethanol as solvent, water as anti-solvent, and polyvinyl alcohol (PVA) as a stabilizer. A Box–Behnken design was employed to study the effect of the independent variables, Gem concentration in the organic phase (X1), PVA concentration (X2) and sonication time (X3) on the dependent variable, drug release after 90 min (Y). The resulting data were statistically analyzed and subjected to 3D response surface methodology to study the influence of variables on the response. NS was evaluated for particle size, zeta potential, solubility and in vitro drug release and characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffractometry (XRD).Results: On the basis of the evaluation, NS4 formulation (with 80 mg/ml Gem, 0.5% PVA concentration, and 20 min of sonication time) demonstrated highest drug content with a particle size of 191.0 nm and zeta potential of −12.0 mV. Dissolution profiles of NS indicated 2.5-fold increase in drug release than pure drug. NS demonstrated 5- and 9-fold increase in solubility, in water, and phosphate buffer (pH 7.5), respectively, pure drug. DSC and XRD studies indicated changes in the crystallinity of Gem during NS formulation. No chemical change was evident in NS as indicated by FTIR.Conclusion: Gem NS formulation could serve as a promising approach for improving its solubility and dissolution rate.


2020 ◽  
Vol 10 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Durga Puro ◽  
Rajani Athawale ◽  
Anjali Pandya

Introduction: Raloxifene Hydrochloride (RXL), a BCS class II drug, is used for the treatment of invasive breast cancer and osteoporosis in post menopausal women. Even though the drug is highly efficient, it shows poor bioavailability of 2% when administered orally. The aim of the study was to develop, statistically optimize, and characterize Raloxifene Hydrochloride loaded Nanostructured Lipid Carriers (NLC) for transdermal delivery to overcome the bioavailability issue. Methods: The RXL-NLC’s were developed using glyceryl behenate (Compritol® 888 ATO), glyceryl monostearate (GMS), and capric triglyceride (Miglyol® 810) as solid and liquid lipids, and Polysorbate 80 (Tween 80) and cremophor EL were used as surfactants and co-surfactant. A response surface methodology was applied for the optimization of NLC, using Box-Behnken experimental design. Amount of the drug, tween 80 and polyethoxylated castor oil (cremophor EL), each at three levels, were selected as independent variables, while particle size and polydispersity index were identified as dependent variables. The optimized batch was characterized for Particle size (79.8 nm±3), Polydispersity index (0.229±0.05), Zeta potential (-12.3±5) and Entrapment efficiency (79.14%±5). Surface morphology of the NLC’s were studied using Transmission Electron microscopy (TEM) and the shift in the endotherm of Differential scanning calorimetry confirmed the entrapment of the drug within NLC. In vitro drug release studies were performed using dialysis bag (12000-14000 Da) method. The optimized NLC dispersion was then incorporated into gel and characterized for gel uniformity, spreadability, pH, viscosity and drug content. Results: In vivo skin penetration study was carried out by tape stripping method, which showed increase in penetration when incorporated into nanogel as compared to plain drug gel. Conclusion: Based on the above result it can be concluded that transdermal delivery of NLC’s can be a superior alternative for orally low bioavailable drugs such as RXL which undergoes rapid first pass metabolism.


Sign in / Sign up

Export Citation Format

Share Document