Design, Optimization and Characterization of Nanostructured Lipid Carriers of Raloxifene Hydrochloride for Transdermal Delivery

2020 ◽  
Vol 10 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Durga Puro ◽  
Rajani Athawale ◽  
Anjali Pandya

Introduction: Raloxifene Hydrochloride (RXL), a BCS class II drug, is used for the treatment of invasive breast cancer and osteoporosis in post menopausal women. Even though the drug is highly efficient, it shows poor bioavailability of 2% when administered orally. The aim of the study was to develop, statistically optimize, and characterize Raloxifene Hydrochloride loaded Nanostructured Lipid Carriers (NLC) for transdermal delivery to overcome the bioavailability issue. Methods: The RXL-NLC’s were developed using glyceryl behenate (Compritol® 888 ATO), glyceryl monostearate (GMS), and capric triglyceride (Miglyol® 810) as solid and liquid lipids, and Polysorbate 80 (Tween 80) and cremophor EL were used as surfactants and co-surfactant. A response surface methodology was applied for the optimization of NLC, using Box-Behnken experimental design. Amount of the drug, tween 80 and polyethoxylated castor oil (cremophor EL), each at three levels, were selected as independent variables, while particle size and polydispersity index were identified as dependent variables. The optimized batch was characterized for Particle size (79.8 nm±3), Polydispersity index (0.229±0.05), Zeta potential (-12.3±5) and Entrapment efficiency (79.14%±5). Surface morphology of the NLC’s were studied using Transmission Electron microscopy (TEM) and the shift in the endotherm of Differential scanning calorimetry confirmed the entrapment of the drug within NLC. In vitro drug release studies were performed using dialysis bag (12000-14000 Da) method. The optimized NLC dispersion was then incorporated into gel and characterized for gel uniformity, spreadability, pH, viscosity and drug content. Results: In vivo skin penetration study was carried out by tape stripping method, which showed increase in penetration when incorporated into nanogel as compared to plain drug gel. Conclusion: Based on the above result it can be concluded that transdermal delivery of NLC’s can be a superior alternative for orally low bioavailable drugs such as RXL which undergoes rapid first pass metabolism.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1485
Author(s):  
Yogeeta O. Agrawal ◽  
Umesh B. Mahajan ◽  
Vinit V. Agnihotri ◽  
Mayur S. Nilange ◽  
Hitendra S. Mahajan ◽  
...  

Ezetimibe (EZE) possesses low aqueous solubility and poor bioavailability and in addition, its extensive hepatic metabolism supports the notion of developing a novel carrier system for EZE. Ezetimibe was encapsulated into nanostructured lipid carriers (EZE-NLCs) via a high pressure homogenization technique (HPH). A three factor, two level (23) full factorial design was employed to study the effect of amount of poloxamer 188 (X1), pressure of HPH (X2) and number of HPH cycle (X3) on dependent variables. Particle size, polydispersity index (PDI), % entrapment efficiency (%EE), zeta potential, drug content and in-vitro drug release were evaluated. The optimized formulation displays pragmatic inferences associated with particle size of 134.5 nm; polydispersity index (PDI) of 0.244 ± 0.03; zeta potential of −28.1 ± 0.3 mV; % EE of 91.32 ± 1.8% and % CDR at 24-h of 97.11%. No interaction was observed after X-ray diffraction (XRD) and differential scanning calorimetry (DSC) studies. EZE-NLCs (6 mg/kg/day p.o.) were evaluated in the high fat diet fed rats induced hyperlipidemia in comparison with EZE (10 mg/kg/day p.o.). Triglyceride, HDL-c, LDL-c and cholesterol were significantly normalized and histopathological evaluation showed normal structure and architecture of the hepatocytes. The results demonstrated the superiority of EZE-NLCs in regard to bioavailability enhancement, dose reduction and dose-dependent side effects.


Author(s):  
SWATHI GANNA ◽  
SAI MANOGNA KOTAKADI ◽  
RESHMA ANJUM MOHAMMED ◽  
MANNUR ISMAIL SHAIK ◽  
JOHN SUSHMA NANNEPAGA

Objective: The objective of the present study was to develop Nanostructured lipid carriers (NLCs) for improvement in the oral bioavailability of RT. Methods: RT-loaded NLCs were prepared by high shear homogenization technique using fish oil and flaxseed oil respectively. The prepared RT-NLCs were characterized using a phase-contrast microscope, scanning electron microscope (SEM), atomic force microscope (AFM), Fourier transform-infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Further, particle size, entrapment efficiency and sustained release of the drug were also studied. Results: SEM results revealed that the RT-NLCs were spherical in shape with a smooth surface. AFM results confirmed the formation of spherical particle dispersions by the NLCs in nanoscale. FTIR spectroscopy and DSC analyses revealed that there is no chemical interaction between the ingredients of RT-NLCs. The particle size of the RT-NLCs was found to be exponentially decreased with the increase in a surfactant solution. Conclusion: The results confirmed pronounced improvement in entrapment efficiency of optimized formulation of RT-NLCs. In vitro, drug release studies showed that RT-NLCs were capable of releasing the drug in a sustained manner. The experimental results showed that the NLCs are potential carriers for providing sustained delivery of rivastigmine.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 367 ◽  
Author(s):  
Bwalya A. Witika ◽  
Vincent J. Smith ◽  
Roderick B. Walker

Lamivudine (3TC) and zidovudine (AZT) are antiviral agents used to manage HIV/AIDS infection. The compounds require frequent dosing, exhibit unpredictable bioavailability and a side effect profile that includes hepato- and haema-toxicity. A novel pseudo one-solvent bottom-up approach and Design of Experiments using sodium dodecyl sulphate (SDS) and α-tocopheryl polyethylene glycol succinate 1000 (TPGS 1000) to electrosterically stablize the nano co-crystals was used to develop, produce and optimize 3TC and AZT nano co-crystals. Equimolar solutions of 3TC in surfactant dissolved in de-ionised water and AZT in methanol were rapidly injected into a vessel and sonicated at 4 °C. The resultant suspensions were characterized using a Zetasizer and the particle size, polydispersity index and Zeta potential determined. Optimization of the nanosuspensions was conducted using a Central Composite Design to produce nano co-crystals with specific identified and desirable Critical Quality Attributes including particle size (PS) < 1000 nm, polydispersity index (PDI) < 0.500 and Zeta potential (ZP) < −30mV. Further characterization was undertaken using Fourier Transform infrared spectroscopy, energy dispersive X-ray spectroscopy, differential scanning calorimetry, powder X-ray diffraction and transmission electron microscopy. In vitro cytotoxicity studies revealed that the optimized nano co-crystals reduced the toxicity of AZT and 3TC to HeLa cells.


2021 ◽  
Author(s):  
Nooryza Martihandini ◽  
Silvia Surini ◽  
Anton Bahtiar

Background: Andrographolide is a phytoconstituent with anti-inflammatory activity, however, the compound’s poor oral bioavailability has hindered its effective formulation for oral administration. This study, therefore, aims to develop an ethosome for improving andrographolide penetration through the transdermal delivery system. Methods: This study developed 3 ethosome formulas with different andrographolide-phospholipid weight ratios (1:8, 1:9; 1:10), using the thin-layer dispersion-sonication method. Subsequently, the ethosomes were evaluated for particle size, polydispersity index, zeta potential, morphology, as well as entrapment efficiency, and incorporated into a gel dosage form. Subsequently, an in vitro penetration study was performed using Franz diffusion cells for 24 hours and the stability of the gels at 5 ± 2°C, 30 ± 2°C, and 40 ± 2°C, were studied for 3 months. Results: The results showed the optimal formula was E2, a 1:9 weight ratio formula of andrographolide and phospholipid. Based on the transmission electron micrograph, E2 possessed unilamellar, as well as spherical-shaped vesicles, and exhibited superior characteristics for transdermal delivery, with a particle size of 89.95 ± 0.75 nm, polydispersity index of 0.254 ± 0.020, a zeta potential of -39.3 ± 0.82 mV, and entrapment efficiency of 97.89 ± 0.02%. Furthermore, the cumulative andrographolide penetration and transdermal flux for the ethosomal gel of E2 (EG2) were 129.25 ± 4.66 µg/cm2 and 5.16 ± 0.10 µg/cm2/hours, respectively. All the ethosomal gel formulations exhibited improved penetration enhancement of andrographolide, compared to the nonethosomal formulations. Also, the andrographolide levels in the ethosomal and nonethosomal gels after 3 months ranged from 98.13 to 104.19%, 97.93 to 104.01%, and 97.23 to 102.26% at storage temperatures of 5 ± 2°C, 30 ± 2°C/RH 65% ± 5%, and 40 ± 2°C/RH 75% ± 5%, respectively. Conclusions: This study concluded that encapsulation into ethosome enhances andrographolide delivery through the skin.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1085 ◽  
Author(s):  
Aditya Murthy ◽  
Punna Rao Ravi ◽  
Himanshu Kathuria ◽  
Shrinivas Malekar

Raloxifene hydrochloride (RLX) shows poor bioavailability (<2%), high inter-patient variability and extensive gut metabolism (>90%). The objective of this study was to develop nanostructured lipid carriers (NLCs) for RLX to enhance its bioavailability. The NLC formulations were produced with glyceryl tribehenate and oleic acid. The particle characteristics, entrapment efficiency (EE), differential scanning calorimetry (DSC), in vitro drug release, oral bioavailability (in rats) and stability studies were performed. The optimized nanoparticles were 120 ± 3 nm in size with positive zeta potential (14.4 ± 0.5 mV); % EE was over 90% with the drug loading of 5%. The RLX exists in an amorphous form in the lipid matrix. The optimized RLX-NLC formulation showed sustained release in vitro. The RLX-NLC significantly (p < 0.05) enhanced oral bioavailability 3.19-fold as compared to RLX-free suspension in female Wistar rats. The RLX-NLC can potentially enhance the oral bioavailability of RLX. It can also improve the storage stability.


Author(s):  
Mohsen Hedaya ◽  
Farzana Bandarkar ◽  
Aly Nada

Introduction: The objectives were to prepare, characterize and in vivo evaluate different ibuprofen (IBU) nanosuspensions prepared by ultra-homogenization, after oral administration to rabbits. Methods: The nanosuspensions produced by ultra-homogenization were tested and compared with a marketed IBU suspension for particle size, in vitro dissolution and in vivo absorption. Five groups of rabbits received orally 25 mg/kg of IBU nanosuspension, nanoparticles, unhomogenized suspension, marketed product and untreated suspension. A sixth group received 5 mg/kg IBU intravenously. Serial blood samples were obtained after IBU administration. Results: The formulated nanosuspensions showed significant decrease in particle size. Polyvinyl Pyrrolidone K30 (PP) was found to improve IBU aqueous solubility much better than the other tested polymers. Addition of Tween 80 (TW), in equal amount as PP (IBU: PP:TW, 1:2:2 w/w) resulted in much smaller particle size and better dissolution rate. The Cmax achieved were 14.8±1.64, 11.1±1.37, 9.01±0.761, 7.03±1.38 and 3.23±1.03 μg/ml and the tmax were 36±8.2, 39±8.2, 100±17.3, 112±15 and 105±17 min for the nanosuspension, nanoparticle, unhomogenized suspension, marketed IBU suspension and untreated IBU suspension in water, respectively. Bioavailability of the different formulations relative to the marketed suspension were the highest for nanosuspension> unhomogenized suspension> nanoparticles> untreated IBU suspension. Conclusion: IBU/PP/TW nanosuspensions showed enhanced in vitro dissolution as well as faster rate and higher extent of absorption as indicated from the higher Cmax, shorter tmax and larger AUC. The in vivo data supported the in vitro results. Nanosuspensions prepared by ultra-high-pressure-homogenization technique can be used as a good formulation strategy to enhance the rate and extent of absorption of poorly soluble drugs.


2011 ◽  
Vol 83 (11) ◽  
pp. 2027-2040 ◽  
Author(s):  
Neralakere Ramanna Ravikumara ◽  
Basavaraj Madhusudhan

In this study, tamoxifen citrate-loaded chitosan nanoparticles (tamoxcL-ChtNPs) and tamoxifen citrate-free chitosan nanoparticles (tamoxcF-ChtNPs) were prepared by an ionic gelation (IG) method. The physicochemical properties of the nanoparticles were analyzed for particle size, zeta (ζ) potential, and other characteristics using photon correlation spectroscopy (PCS), zeta phase analysis light scattering (PALS), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and differential scanning calorimetry (DSC). The variation in particle size was assessed by changing the concentration of chitosan, pentasodium tripolyphosphate (TPP), and the pH of the solution. The optimized tamoxcL-ChtNPs showed mean diameter of 187 nm, polydispersity of 0.125, and ζ-potential of +19.1 mV. The encapsulation efficiency (EE) of tamoxifen citrate (tamoxc) increased at higher concentrations, and release of tamoxc from the chitosan matrix displayed controlled biphasic behavior. Those tamoxcL-ChtNPs tested for chemosensitivity showed dose- and time-dependent antiproliferative activity of tamoxc. Further, tamoxcL-ChtNPs were found to be hemocompatible with human red blood cells (RBCs) and safe by in vitro cytotoxicity tests, suggesting that they offer promise as drug delivery systems in therapy.


Author(s):  
Sejal Patel ◽  
Anita P. Patel

In the interest of administration of dosage form oral route is most desirable and preferred method. After oral administration to get maximum therapeutic effect, major challenge is their water solubility. Water insoluble drug indicate insufficient bioavailability as well dissolution resulting in fluctuating plasma level. Benidipine (BND) is poorly water soluble antihypertensive drug has lower bioavailability. To improve bioavailability of Benidipine HCL, BND nanosuspension was formulated using media milling technique. HPMC E5 was used to stabilize nanosuspension. The effect of different important process parameters e.g. selection of polymer concentration X1(1.25 mg), stirring time X2 (800 rpm), selection of zirconium beads size X3 (0.4mm) were investigated by 23 factorial design to accomplish desired particle size and saturation solubility. The optimized batch had 408 nm particle size Y1, and showed in-vitro dissolution Y2 95±0.26 % in 30 mins and Zeta potential was -19.6. Differential scanning calorimetry (DSC) and FT-IR analysis was done to confirm there was no interaction between drug and polymer.


2021 ◽  
Vol 18 ◽  
Author(s):  
Sonia S. Pandey ◽  
Farhinbanu I. Shaikh ◽  
Arti R. Gupta ◽  
Rutvi J. Vaidya

Background: Despite significant biological effects, the clinical use of chrysin has been restricted because of its poor oral bioavailability. Objective: The purpose of the present research was to investigate the targeting potential of Mannose decorated chrysin (5,7- dihydroxyflavone) loaded solid lipid nanocarrier (MC-SLNs) for gastric cancer. Methods: The Chrysin loaded SLNs (C-SLNs) were developed optimized, characterized and further mannosylated. The C-SLNs were developed with high shear homogenizer, optimized with 32 full factorial designs and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) and evaluated for particle size/polydispersity index, zeta-potential, entrapment efficiency, % release and haemolytic toxicity. The ex-vivo cytotoxicity study was performed on gastric cancer (ACG) and normal cell lines. Results: DSC and XRD data predict the chrysin encapsulation in lipid core and FTIR results confirm the mannosylation of C-SLNs. The optimized C-SLNs exhibited a narrow size distribution with a particle size of 285.65 nm. The % Entrapment Efficiency (%EE) and % controlled release were found to be 74.43% and 64.83%. Once C-SLNs were coated with mannose, profound change was observed in dependent variable - increase in the particle size of MC-SLNs (307.1 nm) was observed with 62.87% release and 70.8% entrapment efficiency. Further, the in vitro studies depicted MC- SLNs to be least hemolytic than pure chrysin and C-SLNs. MC-SLNs were most cytotoxic and were preferably taken up ACG tumor cells as evaluated against C-SLNs. Conclusion: These data suggested that the MC-SLNs demonstrated better biocompatibility and targeting efficiency to treat the gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document