scholarly journals Biodegradable Electrospun Nonwovens Releasing Propolis as a Promising Dressing Material for Burn Wound Treatment

Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 883
Author(s):  
Mateusz Stojko ◽  
Jakub Włodarczyk ◽  
Michał Sobota ◽  
Paulina Karpeta-Jarząbek ◽  
Małgorzata Pastusiak ◽  
...  

The selection of dressing is crucial for the wound healing process. Traditional dressings protect against contamination and mechanical damage of an injured tissue. Alternatives for standard dressings are regenerating systems containing a polymer with an incorporated active compound. The aim of this research was to obtain a biodegradable wound dressing releasing propolis in a controlled manner throughout the healing process. Dressings were obtained by electrospinning a poly(lactide-co-glycolide) copolymer (PLGA) and propolis solution. The experiment consisted of in vitro drug release studies and in vivo macroscopic treatment evaluation. In in vitro studies released active compounds, the morphology of nonwovens, chemical composition changes of polymeric material during degradation process, weight loss and water absorption were determined. For in vivo research, four domestic pigs, were used. The 21-day experiment consisted of observation of healing third-degree burn wounds supplied with PLGA 85/15 nonwovens without active compound, with 5 wt % and 10 wt % of propolis, and wounds rinsed with NaCl. The in vitro experiment showed that controlling the molar ratio of lactidyl to glycolidyl units in the PLGA copolymer gives the opportunity to change the release profile of propolis from the nonwoven. The in vivo research showed that PLGA nonwovens with propolis may be a promising dressing material in the treatment of severe burn wounds.

2015 ◽  
Vol 18 (2) ◽  
pp. 29-37
Author(s):  
Hien Thi Minh Ngo ◽  
Linh Quang Huynh ◽  
Liao Jiunn Der ◽  
Thuy Ngu Son Nguyen

In this work, non-thermal N2/Ar micro-plasma was applied to fibroblast cells and second degree burn in mice to investigate the bio-safety and bioefficiency of micro-plasma device for studying wound healing process. The chosen parameters of the device were the addition of 0.5% N2 in argon plasma and RF supplied power of 17 W and 13 W in vitro and in vivo studies, respectively. Firstly, micro-plasma was applied to fibroblast cells and the induced biological effect was studied in vitro. The result showed that cells number increased three folds for plasma exposure time of 5 or 10 sec, followed by cell culture for 48 hrs. The cell coverage rate rose 20% for the same plasma exposure time, followed by cell culture for 6 or 12 hrs. Secondly, micro-plasma was applied to the second degree burn wound mice, followed by related ex vivo and in vivo assessments. For the former, 0.5% N2/Ar micro-plasma was competent to generate ROS/RNS signals for advancing healing process by the increase of ROS/RNS concentration around the plasma-exposed wound bed. The induced effect is most probably correlated with the angiogenesis and epithelialization processes of the burn wound on mice.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3116
Author(s):  
Thien Do ◽  
Tien Nguyen ◽  
Minh Ho ◽  
Nghi Nguyen ◽  
Thai Do ◽  
...  

(1) Background: Wounds with damages to the subcutaneous are difficult to regenerate because of the tissue damages and complications such as bacterial infection. (2) Methods: In this study, we created burn wounds on pigs and investigated the efficacy of three biomaterials: polycaprolactone-gelatin-silver membrane (PCLGelAg) and two commercial burn dressings, Aquacel® Ag and UrgoTulTM silver sulfadiazine. In vitro long-term antibacterial property and in vivo wound healing performance were investigated. Agar diffusion assays were employed to evaluate bacterial inhibition at different time intervals. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill assays were used to compare antibacterial strength among samples. Second-degree burn wounds in the pig model were designed to evaluate the efficiency of all dressings in supporting the wound healing process. (3) Results: The results showed that PCLGelAg membrane was the most effective in killing both Gram-positive and Gram-negative bacteria bacteria with the lowest MBC value. All three dressings (PCLGelAg, Aquacel, and UrgoTul) exhibited bactericidal effect during the first 24 h, supported wound healing as well as prevented infection and inflammation. (4) Conclusions: The results suggest that the PCLGelAg membrane is a practical solution for the treatment of severe burn injury and other infection-related skin complications.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1153
Author(s):  
Verena Schneider ◽  
Daniel Kruse ◽  
Ives Bernardelli de Mattos ◽  
Saskia Zöphel ◽  
Kendra-Kathrin Tiltmann ◽  
...  

Burns affect millions every year and a model to mimic the pathophysiology of such injuries in detail is required to better understand regeneration. The current gold standard for studying burn wounds are animal models, which are under criticism due to ethical considerations and a limited predictiveness. Here, we present a three-dimensional burn model, based on an open-source model, to monitor wound healing on the epidermal level. Skin equivalents were burned, using a preheated metal cylinder. The healing process was monitored regarding histomorphology, metabolic changes, inflammatory response and reepithelialization for 14 days. During this time, the wound size decreased from 25% to 5% of the model area and the inflammatory response (IL-1β, IL-6 and IL-8) showed a comparable course to wounding and healing in vivo. Additionally, the topical application of 5% dexpanthenol enhanced tissue morphology and the number of proliferative keratinocytes in the newly formed epidermis, but did not influence the overall reepithelialization rate. In summary, the model showed a comparable healing process to in vivo, and thus, offers the opportunity to better understand the physiology of thermal burn wound healing on the keratinocyte level.


Author(s):  
Santram Lodhi ◽  
Gautam P Vadnere

The wound healing process consists of four highly integrated and overlapping phases: Hemostasis, inflammation, proliferation, and tissue remodeling. These phases and their biophysiological functions must occur in the proper sequence, at a specific time and continue for a specific duration at an optimal intensity. There are many factors that can affect wound healing which interferes with one or more phases in this process, thus causing improper or impaired tissue repair. This review was aimed to collect data and made a critical analysis. This will provide concise information regarding different models and parameters used for wound healing study. The data related to different wound models are collected using popular search engines as well as relevant science search engines and database including Google Scholar, Science Direct, and PubMed. A new drug substance can be evaluated for wound healing activity using different in vitro models such as cell culture, chick chorioallantoic membrane model, tube formation on metrigel and capillary growth model. The in vivo wound models such as incision, excision, dead space, burn wound, ischemic wound, and diabetic wound models are frequently used. Each model has specific importance. The limitations and advantages of each are described in this review. Although animal wound repair is an imperfect reflection of human wound healing and its clinical challenges, these models can be fundamental tools for the development of new approaches to rational wound therapy. 


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1436 ◽  
Author(s):  
Khatarina Meldawati Pasaribu ◽  
Saharman Gea ◽  
Syafruddin Ilyas ◽  
Tamrin Tamrin ◽  
Appealwan Altruistis Sarumaha ◽  
...  

Bacterial cellulose (BC) is a biopolymer commonly used for wound dressing due to its high biocompatible properties either in-vitro or in-vivo. The three-dimensional fiber structure of BC becomes an advantage because it provides a template for the impregnation of materials in order to improve BC’s properties as a wound dressing, since BC has not displayed any bioactivity properties. In this study, micro-colloidal Zanthoxylum acanthopodium (MZA) fruit was loaded into BC fibers via an in-situ method. Z. acanthopodium is known to have anti-inflammatory, antioxidant and antimicrobial activities that can support BC to accelerate the wound healing process. The FTIR, XRD and SEM analysis results showed that the loading process of MZA and the composite fabrication were successfully carried out. The TGA test also showed that the presence of MZA in BC fibers decreased Tmax composite from BC, from 357.8 to 334.5 °C for BC-MZA3. Other aspects, i.e., water content, porosity, hemocompatibility and histology studies, also showed that the composite could potentially be used as a wound dressing.


2020 ◽  
Vol 41 (Supplement_1) ◽  
pp. S79-S80
Author(s):  
Jahnabi Roy ◽  
Lori Estes ◽  
Robert J Christy ◽  
Hitesh Handa ◽  
Shanmugasundaram Natesan

Abstract Introduction The future of multi-domain battlefield operation requires wound dressings to prevent infection at the point of injury. Majority of antimicrobial agents only target wound infection while other healing events are left to their natural fates. Nitric oxide (NO) acts against both gram-positive and -negative bacteria and has the potential to positively affect wound healing. In this study we have developed a novel wound dressing integrated with a NO donor - S-nitroso- glutathione (GSNO) in a hybrid formulation of alginate and poly(vinyl alcohol) (PVA) to prevent/treat burn wound infection. Methods The NO releasing wound dressing was fabricated using PVA, alginate, and glycerol, crosslinked with CaCl2 incorporating GSNO. Thereafter, release kinetics were measured up to 4 days. The antibacterial efficacy was determined against both P. aeruginosa and S. aureus. Then the biocompatibility of the NO wound dressing was assessed using in vitro fibroblast proliferation and wound healing assay. Finally, the efficacy of the wound dressing was assessed in vivo using a 3-cm diameter porcine burn wound infection model. Results The Alginate-PVA-GSNO dressing showed a desired physiological level NO flux of 4.42 × 10-10 mol cm-2 min-1 for 72 hours. Alginate−PVA−GSNO dressings showed ~3 log reduction in S. aureus and ~2 log reduction in P. aeruginosa CFU/mg when compared to control. The NO-releasing dressing improved fibroblast proliferation and migration resulting in complete closure of the wound within 48 h in vitro. The safety and efficacy of NO-releasing dressing were successfully established in the both P. aeruginosa and S. aureus infected porcine burn wounds. Histological assessments are carried out to determine the effect of NO-releasing dressing on overall healing process. Conclusions This study shows Alginate−PVA-GSNO wound dressing provides antimicrobial and wound healing properties in vitro. Preliminary in vivo wound healing studies established the safety and efficacy profile of NO-releasing dressing to treat burn wounds. Applicability of Research to Practice An easy to apply, field deployable and effective antimicrobial wound dressing is still a major requisite for combat burn wounds. NO delivering alginate-PVA based wound dressing may be an ideal candidate to inhibit infection as well as promote the wound healing process.


2021 ◽  
Vol 22 (8) ◽  
pp. 4087
Author(s):  
Maria Quitério ◽  
Sandra Simões ◽  
Andreia Ascenso ◽  
Manuela Carvalheiro ◽  
Ana Paula Leandro ◽  
...  

Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process—however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.


2017 ◽  
Vol 751 ◽  
pp. 581-585 ◽  
Author(s):  
Piyaporn Kampeerapappun ◽  
Pornpen Siridamrong

The objective of this study was to investigate sericin-polyurethane nanofiber cover (SUC) for wound dressing materials in a rat skin. Sericin-polyurethane blended nanofibers were fabricated by using electrospinning. The composition of 3%w/v polyurethane in ethanol and 19% w/v sericin were blended and electrospun at 15 kV, 20 cm from tip to collector with a feed rate of 6.2 ml/hr. The mats, approximately 1.5 mm thick, were sterile by gamma irradiation with a radiation dose of 15 kGy. The samples of in vitro and in vivo testing were separated into three groups; gauze, polyurethane nanofiber cover (UC), and SUC. In vitro cultured L929 cell lines were investigated with inverted microscope. It was found that cells migrated to SCU. For in vivo tests, the remaining wound in rats was measured on day 2-14 after excision. Compared to original size of wound samples, the size of the wound remained 24% for SUC, 33% for gauze, and 34% for UC at day 8. The sericin, an active agent, contained in SUC mats was about 5 µl at 1.5 ×1.5 cm. It can be concluded that sericin is non-toxic to cells and can promote wound healing process in rats.


2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S191-S192
Author(s):  
Angela R Jockheck-Clark ◽  
Randolph Stone ◽  
Michelle Holik ◽  
Lucy Schaffer ◽  
Shanmugasundaram Natesan ◽  
...  

Abstract Introduction Thermal burns account for 5–10% of casualties sustained in present-day conflicts and are expected to be one of the most common wounds to occur in future conflicts. In prolonged field care (PFC) situations, medical evacuation could be delayed for days. During this time, burn wounds can become infected, detrimentally impact neighboring tissue, and cause systemic immune responses. Therefore, it is essential to test and evaluate non-surgical debridement agents that could be implemented prior to reaching a Role 3 military treatment facility. This work details how the proprietary proteolytic gel SN514 impacts burn debridement when applied within a PFC-like timeline. SN514 contains an enzyme formulation that is thermostable, easy to apply, and selectively degrades non-viable tissue in vitro and in vivo. Methods Deep-partial thickness contact burns were created using an established porcine model and covered with gauze or an antimicrobial incise drape. Four days later, the burns were treated with one of five treatments: 0.2% SN514, 0.8% SN514, a vehicle control, gauze, or an antimicrobial silver dressing. Treatments were re-applied every 24 hours for 72 to 96 hours. The effects of the treatment regiments were compared histologically. Biopsies were also taken to monitor bacterial contamination levels. Results Burns treated with SN514 were partially debrided and visually distinct from those treated with gauze, the silver dressing, or the vehicle control. Preliminary analyses suggest that SN514-treated burns that had been covered with “dry” gauze had a much lower debridement efficiency than those treated with the incise drape. This suggests that SN514 debridement efficiency may depend on the presence of a moist eschar. Preliminary analyses also suggest that there was little difference in burn wound bacterial counts among the five treatment groups. Conclusions SN514 is able to debride burns that experienced delayed treatment, without any evidence of harm to the surrounding tissue or evidence of exacerbating the original burn injury. SN514-treated wounds displayed little to no blood loss and did not increase burn wound infection levels compared to wounds treated with gauze or an antimicrobial silver dressing.


2020 ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo.Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography.Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro.Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


Sign in / Sign up

Export Citation Format

Share Document