scholarly journals Lipophilic Polyamines as Promising Components of Liposomal Gene Delivery Systems

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 920
Author(s):  
Pavel A. Puchkov ◽  
Michael A. Maslov

Gene therapy requires an effective and safe delivery vehicle for nucleic acids. In the case of non-viral vehicles, including cationic liposomes, the structure of compounds composing them determines the efficiency a lot. Currently, cationic amphiphiles are the most frequently used compounds in liposomal formulations. In their structure, which is a combination of hydrophobic and cationic domains and includes spacer groups, each component contributes to the resulting delivery efficiency. This review focuses on polycationic and disulfide amphiphiles as prospective cationic amphiphiles for gene therapy and includes a discussion of the mutual influence of structural components.

2020 ◽  
Vol 20 (11) ◽  
pp. 821-830
Author(s):  
Prasad Pofali ◽  
Adrita Mondal ◽  
Vaishali Londhe

Background: Current gene therapy vectors such as viral, non-viral, and bacterial vectors, which are used for cancer treatment, but there are certain safety concerns and stability issues of these conventional vectors. Exosomes are the vesicles of size 40-100 nm secreted from multivesicular bodies into the extracellular environment by most of the cell types in-vivo and in-vitro. As a natural nanocarrier, exosomes are immunologically inert, biocompatible, and can cross biological barriers like the blood-brain barrier, intestinal barrier, and placental barrier. Objective: This review focusses on the role of exosome as a carrier to efficiently deliver a gene for cancer treatment and diagnosis. The methods for loading of nucleic acids onto the exosomes, advantages of exosomes as a smart intercellular shuttle for gene delivery and therapeutic applications as a gene delivery vector for siRNA, miRNA and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and also the limitations of exosomes as a gene carrier are all reviewed in this article. Methods: Mostly, electroporation and chemical transfection are used to prepare gene loaded exosomes. Results: Exosome-mediated delivery is highly promising and advantageous in comparison to the current delivery methods for systemic gene therapy. Targeted exosomes, loaded with therapeutic nucleic acids, can efficiently promote the reduction of tumor proliferation without any adverse effects. Conclusion: In the near future, exosomes can become an efficient gene carrier for delivery and a biomarker for the diagnosis and treatment of cancer.


Author(s):  
Yao-Hua Liu ◽  
Yu Liu

Nucleic acids condensation and controlled release remain significant challenges of gene therapy in chemical biology and nanotechnology fields. In this work, we have reported a polysaccharide supramolecular assembly constructed by...


2016 ◽  
Vol 14 (28) ◽  
pp. 6857-6870 ◽  
Author(s):  
Mallikarjun Gosangi ◽  
Thasneem Yoosuf Mujahid ◽  
Vijaya Gopal ◽  
Srilakshmi V. Patri

Gene therapy, a promising strategy for the delivery of therapeutic nucleic acids, is greatly dependent on the development of efficient vectors.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 446
Author(s):  
Henrique Faneca

The advances in the field of gene therapy have significantly improved the possibility for nucleic acids as highly promising agents for the treatment of both inherited and acquired human diseases [...]


2019 ◽  
Vol 7 (11) ◽  
pp. 1824-1841 ◽  
Author(s):  
Ziyao Kang ◽  
Qingbin Meng ◽  
Keliang Liu

Gene therapy as a strategy for disease treatment requires safe and efficient gene delivery systems that encapsulate nucleic acids and deliver them to effective sites in the cell.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 843
Author(s):  
Noha Attia ◽  
Mohamed Mashal ◽  
Gustavo Puras ◽  
Jose Luis Pedraz

The cell-based approach in gene therapy arises as a promising strategy to provide safe, targeted, and efficient gene delivery. Owing to their unique features, as homing and tumor-tropism, mesenchymal stem cells (MSCs) have recently been introduced as an encouraging vehicle in gene therapy. Nevertheless, non-viral transfer of nucleic acids into MSCs remains limited due to various factors related to the main stakeholders of the process (e.g., nucleic acids, carriers, or cells). In this review, we have summarized the main types of nucleic acids used to transfect MSCs, the pros and cons, and applications of each. Then, we have emphasized on the most efficient lipid-based carriers for nucleic acids to MSCs, their main features, and some of their applications. While a myriad of studies have demonstrated the therapeutic potential for engineered MSCs therapy in various illnesses, optimization for clinical use is an ongoing challenge. On the way of improvement, genetically modified MSCs have been combined with various novel techniques and tools (e.g., exosomes, spheroids, 3D-Bioprinting, etc.,) aiming for more efficient and safe applications in biomedicine.


2020 ◽  
Vol 20 (3) ◽  
pp. 195-206 ◽  
Author(s):  
Shriya Agarwal ◽  
Vinayak Agarwal ◽  
Mugdha Agarwal ◽  
Manisha Singh

Abstract: In recent times, several approaches for targeted gene therapy (GT) had been studied. However, the emergence of extracellular vesicles (EVs) as a shuttle carrying genetic information between cells has gained a lot of interest in scientific communities. Owing to their higher capabilities in dealing with short sequences of nucleic acid (mRNA, miRNA), proteins, recombinant proteins, exosomes, the most popular form of EVs are viewed as reliable biological therapeutic conveyers. They have natural access through every biological membrane and can be employed for site-specific and efficient drug delivery without eliciting any immune responses hence, qualifying as an ideal delivery vehicle. Also, there are many research studies conducted in the last few decades on using exosome-mediated gene therapy into developing an effective therapy with the concept of a higher degree of precision in gene isolation, purification and delivery mechanism loading, delivery and targeting protocols. This review discusses several facets that contribute towards developing an efficient therapeutic regime for gene therapy, highlighting limitations and drawbacks associated with current GT and suggested therapeutic regimes.


Nanoscale ◽  
2020 ◽  
Vol 12 (18) ◽  
pp. 10189-10195 ◽  
Author(s):  
Xin Zhao ◽  
Dongyang Tang ◽  
Ying Wu ◽  
Shaoqing Chen ◽  
Cheng Wang

The artifical cell system for the gene therapy of cancer might be a promising approach for the reversal of neoplastic progress of cancer cells.


Sign in / Sign up

Export Citation Format

Share Document