scholarly journals Topical Artocarpus communis Nanoparticles Improved the Water Solubility and Skin Permeation of Raw A. communis Extract, Improving Its Photoprotective Effect

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1372
Author(s):  
Chun-Yin Yang ◽  
Pao-Hsien Huang ◽  
Chih-Hua Tseng ◽  
Feng-Lin Yen

Antioxidants from plant extracts are often used as additives in skincare products to prevent skin problems induced by environmental pollutants. Artocarpus communis methanol extract (ACM) has many biological effects, such as antioxidant, anti-inflammatory, wound healing, and photoprotective effects; however, the poor water solubility of raw ACM has limited its applications in medicine and cosmetics. Topical antioxidant nanoparticles are one of the drug-delivery systems for overcoming the poor water solubility of antioxidants for increasing their skin penetration. The present study demonstrated that ACM-loaded hydroxypropyl-β-cyclodextrin and polyvinylpyrrolidone K30 nanoparticles (AHP) were successfully prepared and could effectively increase the skin penetration of ACM through changing the physicochemical characteristics of raw ACM, including reducing the particle size, increasing the surface area, and inducing amorphous transformation. Our results also revealed that AHP had significantly better antioxidant activity than raw ACM for preventing photocytotoxicity because the AHP formulation increased the cellular uptake of the ACM in UVB-irradiated HaCaT keratinocytes. In conclusion, our results suggest that AHP may be used as a good topical antioxidant nanoparticle for delivering ACM into deep layers of the skin for preventing UVB-induced skin problems.

2018 ◽  
Vol 69 (7) ◽  
pp. 1838-1841
Author(s):  
Hajnal Kelemen ◽  
Angella Csillag ◽  
Bela Noszal ◽  
Gabor Orgovan

Ezetimibe, the antihyperlipidemic drug of poor bioavailability was complexed with native and derivatized cyclodextrins.The complexes were characterized in terms stability, stoichiometry and structure using various 1D and 2D solution NMR spectroscopic techniques. The complexes were found to be of moderate stability (logK[3). The least stable inclusion complex is formed with b-cyclodextrin, while the ezetimibe-methylated-b--cyclodextrin has a 7-fold higher stability. The results can be useful to improve the poor water-solubility and the concomitant bioavailability of ezetimibe.


2021 ◽  
Vol 27 ◽  
Author(s):  
Afsaneh Farjami ◽  
Sara Salatin ◽  
Samira Jafari ◽  
Mohammad Mahmoudian ◽  
Mitra Jelvehgari

: The skin provides a protective barrier against toxic environments and also offers a valuable route for topical drug delivery. The stratum corneum (SC) is the outermost layer of the skin and serves as the major barrier to chemical transfer through the skin. The human skin barrier is particularly diffcult to overcome because of the complex composition and structure of the SC. Nanoparticulate carriers have gained widespread attention in topical drug delivery due to their tunable and versatile properties. The present review summarizes the main factors involved in the skin penetration of nanocarriers containing drug. Employment of nanotechnology in topical delivery has grown progressively during recent years; however, it is important to monitor the skin penetration of nanocarriers prior to their use due to avoid possible toxic effects. Nanocarriers can act as a means to increase the skin permeation of drugs by supporting a direct interaction with the SC and increasing the period of permanence on the skin. The skin penetration is influenced by the physicochemical characteristics of nanocarriers such as composition, size, shape, surface chemistry as well as skin features. Considering that the target of topical systems based on nanocarriers is the penetration of therapeutic agents in the skin layers, so a detailed understanding of the factors influencing skin permeability of nanocarriers is essential for safe and efficient therapeutic applications.


2020 ◽  
Vol 10 ◽  
Author(s):  
Vijay Agrawal ◽  
Vipin Sharma ◽  
Pankaj Kumar Sharma

Background: Eplerenone (EPL) is a BCS class II drug, thus, having the poor water solubility. The poor water solubility of this drug leads to the poor dissolution and ultimately shows the poor bioavailability. To overcome this problem, the solid dispersion of EPL was prepared in this study. Methods: This was accomplished by using the solvent melt method as the solid dispersion technique. In this method Pluronic F-68 and F-127 was used as the carrier and different formulations were prepared using the varying in ratio of a drug and carrier (1:1, 1:2, 1:3, 1:4, 1:5). The mixture of drug solution and carrier were prepared at 70oC, using the digital magnetic stirrer. The resultant mixture was dried at 40oC in hot air oven and optimized EPL-solid dispersion was undergone for their characterization using drug content, drug entrapment efficiency (%) and drug loading content (%), Scanning Electron Microscopy (SEM), Infra-Red spectroscopy, Differential Scanning Calorimetery (DSC), stability study and in-vitro dissolution studies. Results: The result indicated that there was no interaction between EPL and Pluronics (Pluronic F-68 & F-127), and optimized formulation (P127-2) of EPL-solid dispersion have encapsulation efficiency > 95%. Experimental work also showed that optimized formulation has 31.7% of drug loading content which was greater than other existing solid dispersion having less than 30% of drug loading content. Out of different batches, the optimized batch exhibits the faster dissolution rate in comparison of other batches. It released the almost total amount of drug (98.96%) in 30 minutes. The stored ESM-solid dispersion also exhibited their remarkable stability and remains in solid state, when it was exposed to 25oC/60% relative humidity and room temperature (38ºC) for two months. Such stability was confirmed by DSC method. The DSC thermogram of optimized formulation exhibited a melting endotherm at onset temperature of 160oC, a peak temperature of 165oC and a heat of fusion of 25.68 J/gm. Simirly, DSC thermogram of physical mixture of bulk EPL/pluronic F-127 also exhibited the onset of temperature at 165oC, and a peak temperature at 171oC. Thus, result indicated that both sample showed the almost similar DSC pattern and no one sample alter their state after the treatment of temperature and humidity used in stability testing. SEM study was also performed in this research and result indicated that the particle size of optimized formulation was varied and having the irregular matrices due to porous nature of the carrier. Conclusion: Based on different findings it can be concluded that solvent melt method could be a potential method for preparing the solid dispersion of EPL like BCS class-II Drugs and will be able to solve the dissolution and solubilization related problem of poorly soluble drugs.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 399 ◽  
Author(s):  
Huang ◽  
Hu ◽  
Yen ◽  
Tseng

As is known, many antioxidants from plant extracts have been used as additives in skincare products to prevent skin damage following overexposure to environmental pollutants. 7,3′,4′-trihydroxyisoflavone (734THIF), an isoflavone compound, possesses various biological activities, including antioxidant, antityrosinase, photodamage protection, and anticancer effects. Unfortunately, 734THIF has poor water solubility, which limits its skin penetration and absorption, and subsequently influences its biological activity. The aim of the present study was to investigate the mechanisms for the improvement in water solubility and skin penetration of 2-hydroxypropyl-β-cyclodextrin (HPBCD) inclusion complex with 734THIF (5-7HP). We also determined its photostability, antipollutant activity in HaCaT keratinocytes, and moisturizing effect in human subjects. Our results showed that 734THIF was embedded into the lipophilic inner cavity of HPBCD and its water solubility and skin penetration were thereby improved through amorphous transformation, surface area enhancement, and hydrogen bonding formation between 734THIF and HPBCD. In addition, 5-7HP inhibited PM-induced ROS generation and then downregulated ROS-mediated COX-2 and MMP9 production and AQP-3 consumption by inhibiting the phosphorylation of MAPKs. Consequently, we suggest that 5-7HP is a safe and photostable topical ingredient to enhance the skin penetration of 734THIF and skin hydration, and therefore 5-7HP may be used as an antipollutant additive in skin care products.


2019 ◽  
Vol 23 (1) ◽  
pp. 2-13 ◽  
Author(s):  
Dong-Dong Zhao ◽  
Xiao-Wen Fan ◽  
He Hao ◽  
Hong-Li Zhang ◽  
Ye Guo

Hydrophobic proteins, as one of the cellular protein classifications, play an essential function in maintaining the normal life cycle of living cells. Researches on the structure and function of hydrophobic proteins promote the exploration of the causes of major diseases, and development of new therapeutic agents for disease treatment. However, the poor water solubility of hydrophobic proteins creates problems for their preparation, separation, characterization and functional studies. The temporary solubilizing tags are considered a practical strategy to effectively solve the poor water solubility problem of hydrophobic proteins. This strategy can significantly improve the water solubility of hydrophobic peptides/proteins, making them like water-soluble peptides/proteins easy to be purified, characterized. More importantly, the temporary solubilizing tags can be removed after protein synthesis, so thus the structure and function of the hydrophobic proteins are not affected. At present, temporary solubilizing tags have been successfully used to prepare many important hydrophobic proteins such as membrane proteins, lipoproteins and chaperones. In this review, we summarize the recent researches and applications of temporary solubilizing tags.


2020 ◽  
Vol 17 (4) ◽  
pp. 270-278
Author(s):  
Maha Nasr ◽  
Rawan Al-Karaki

Nanotechnology is currently a hot topic in dermatology and nutraceutical/cosmeceutical delivery, owing to the advantages it provides in terms of enhancing the skin permeation of drugs, as well as increasing their therapeutic efficacy in the treatment of different dermatological diseases. There is also a great interest in the topical delivery of nutraceuticals; which are natural compounds with both therapeutic and cosmetic benefits, in order to overcome the side effects of topically applied chemical drugs. Quercetin is a key nutraceutical with topical antioxidant and anti-inflammatory properties which was reported to be effective in the treatment of different dermatological diseases, however, its topical therapeutic activity is hindered by its poor skin penetration. This review highlights the topical applications of quercetin, and summarizes the nanocarrier-based solutions to its percutaneous delivery challenges.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 186
Author(s):  
Maria Natalia Calienni ◽  
Daniela Maza Vega ◽  
C. Facundo Temprana ◽  
María Cecilia Izquierdo ◽  
David E. Ybarra ◽  
...  

Vismodegib is a first-in-class inhibitor for advanced basal cell carcinoma treatment. Its daily oral doses present a high distribution volume and several side effects. We evaluated its skin penetration loaded in diverse nanosystems as potential strategies to reduce side effects and drug quantities. Ultradeformable liposomes, ethosomes, colloidal liquid crystals, and dendrimers were able to transport Vismodegib to deep skin layers, while polymeric micelles failed at this. As lipidic systems were the most effective, we assessed the in vitro and in vivo toxicity of Vismodegib-loaded ultradeformable liposomes, apoptosis, and cellular uptake. Vismodegib emerges as a versatile drug that can be loaded in several delivery systems for topical application. These findings may be also useful for the consideration of topical delivery of other drugs with a low water solubility.


RSC Advances ◽  
2015 ◽  
Vol 5 (84) ◽  
pp. 68743-68750 ◽  
Author(s):  
Sacheen Kumar ◽  
Jaspreet Kaur Randhawa

Paliperidone is an antipsychotic drug having poor water solubility and bioavailability. Solid lipid nanoparticles of stearic acid loaded with paliperidone were prepared to enhance the bioavailability.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1476
Author(s):  
Martina Ghezzi ◽  
Silvia Pescina ◽  
Andrea Delledonne ◽  
Ilaria Ferraboschi ◽  
Cristina Sissa ◽  
...  

Imiquimod (IMQ) is an immunostimulant drug approved for the topical treatment of actinic keratosis, external genital-perianal warts as well as superficial basal cell carcinoma that is used off-label for the treatment of different forms of skin cancers, including some malignant melanocytic proliferations such as lentigo maligna, atypical nevi and other in situ melanoma-related diseases. Imiquimod skin delivery has proven to be a real challenge due to its very low water-solubility and reduced skin penetration capacity. The aim of the work was to improve the drug solubility and skin retention using micelles of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), a water-soluble derivative of vitamin E, co-encapsulating various lipophilic compounds with the potential ability to improve imiquimod affinity for the micellar core, and thus its loading into the nanocarrier. The formulations were characterized in terms of particle size, zeta potential and stability over time and micelles performance on the skin was evaluated through the quantification of imiquimod retention in the skin layers and the visualization of a micelle-loaded fluorescent dye by two-photon microscopy. The results showed that imiquimod solubility strictly depends on the nature and concentration of the co-encapsulated compounds. The micellar formulation based on TPGS and oleic acid was identified as the most interesting in terms of both drug solubility (which was increased from few µg/mL to 1154.01 ± 112.78 µg/mL) and micellar stability (which was evaluated up to 6 months from micelles preparation). The delivery efficiency after the application of this formulation alone or incorporated in hydrogels showed to be 42- and 25-folds higher than the one of the commercial creams.


Sign in / Sign up

Export Citation Format

Share Document