scholarly journals Comparative In Vitro Evaluation of Commercial Periodontal Gels on Antibacterial, Biocompatibility and Wound Healing Ability

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1502
Author(s):  
Marta Munar-Bestard ◽  
Maria Antonia Llopis-Grimalt ◽  
Joana Maria Ramis ◽  
Marta Monjo

In the last years, several studies testing commercial periodontal gels that contain chlorhexidine (CHX) or other antibacterial agents, have raised concerns regarding their cytotoxicity in periodontal tissues. We aimed at comparing the biocompatibility but also the efficacy as regards to the antibacterial and wound healing ability of different commercial periodontal gels. In vitro human gingival fibroblasts (GF) and a 3D model of human tissue equivalents of gingiva (GTE) were used under inflammatory conditions to evaluate wound closure, cytotoxicity and gene expression. Antibacterial effects were also investigated on Porphyromonas gingivalis growth, viability and gingipain activity. In GF and in the bacterial study, we found cytotoxic effects on GF and a high inhibition on bacterial growth rate in gels containing CHX, asiaticoside, enoxolone, cetylpyridinium chloride, propolis and eugenol. Of the two gels that were non-cytotoxic, Syntoss Biogel (containing chondrontin sulfate) and Emdogain (EMD, containing amelogenin and propylene glycol alginate), EMD showed the best wound closure, with no effect on P. gingivalis growth but decreased gingipain activity. On the other hand, Syntoss Biogel reduced viability and gingipain activity of P. gingivalis, but lack wound healing capacity. In the 3D GTE, Syntoss Biogel and EMD showed a good biocompatibility. Among all the tested gels, formulations containing CHX, asiaticoside, enoxolone, cetylpyridinium chloride, propolis and eugenol showed high antibacterial effect but also showed high cytotoxicity in eukaryotic cells. EMD was the one with the best biocompatibility and wound healing ability at the conditions tested.

2019 ◽  
Vol 20 (15) ◽  
pp. 3679 ◽  
Author(s):  
Lin Chen ◽  
Alyne Simões ◽  
Zujian Chen ◽  
Yan Zhao ◽  
Xinming Wu ◽  
...  

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


2020 ◽  
pp. 152808372097634
Author(s):  
Daiqi Jiang ◽  
Zaiju Tong ◽  
Lingjun Peng ◽  
Lingzhi Zhang ◽  
Qianzi Ruan ◽  
...  

Novel the bilayered electrospun biosheet with rapid cell mimiciking and proliferative efficacy will be suitable for wound healing application. The optimized concentration of gelatin (G) and sodium alginate (A) biosheet with nanofibrous Poly (3-hydroxybutyric acid) (P) as a bilayered elctrospun matrix through electrospinning. The engineered GAP bilayered biosheet involves tissue formation at extra cellular matrix (ECM) which further characterized its function in vitro and invivo. Here we fabricated GAP which exhibit better physiochemical properties, biological and mechanical properties with superior prosomes it enhance air passable at skin wounds. The Bilayered biosheet matrix possess better biocompatibility, cell adherence, fructuous and cell to cell interactions evaluated using cell lines. Furthermore, GAP bilayered matrix regulates growth factors to attain maximum wound closure efficiency during invivo. Thus, the fabricated GAP electrospun biosheet would be a possible wound dressing for skin wound applications.


2010 ◽  
Vol 19 (4) ◽  
pp. 399-408 ◽  
Author(s):  
Sina Y. Rabbany ◽  
Joseph Pastore ◽  
Masaya Yamamoto ◽  
Tim Miller ◽  
Shahin Rafii ◽  
...  

Proper wound diagnosis and management is an increasingly important clinical challenge and is a large and growing unmet need. Pressure ulcers, hard-to-heal wounds, and problematic surgical incisions are emerging at increasing frequencies. At present, the wound-healing industry is experiencing a paradigm shift towards innovative treatments that exploit nanotechnology, biomaterials, and biologics. Our study utilized an alginate hydrogel patch to deliver stromal cell-derived factor-1 (SDF-1), a naturally occurring chemokine that is rapidly overexpressed in response to tissue injury, to assess the potential effects SDF-1 therapy on wound closure rates and scar formation. Alginate patches were loaded with either purified recombinant human SDF-1 protein or plasmid expressing SDF-1 and the kinetics of SDF-1 release were measured both in vitro and in vivo in mice. Our studies demonstrate that although SDF-1 plasmid- and protein-loaded patches were able to release therapeutic product over hours to days, SDF-1 protein was released faster (in vivo Kd 0.55 days) than SDF-1 plasmid (in vivo Kd 3.67 days). We hypothesized that chronic SDF-1 delivery would be more effective in accelerating the rate of dermal wound closure in Yorkshire pigs with acute surgical wounds, a model that closely mimics human wound healing. Wounds treated with SDF-1 protein ( n = 10) and plasmid ( n = 6) loaded patches healed faster than sham ( n = 4) or control ( n = 4). At day 9, SDF-1-treated wounds significantly accelerated wound closure (55.0 ± 14.3% healed) compared to nontreated controls (8.2 ± 6.0%, p < 0.05). Furthermore, 38% of SDF-1-treated wounds were fully healed at day 9 (vs. none in controls) with very little evidence of scarring. These data suggest that patch-mediated SDF-1 delivery may ultimately provide a novel therapy for accelerating healing and reducing scarring in clinical wounds.


2019 ◽  
Vol 81 (4) ◽  
Author(s):  
Ulfah Anwar ◽  
Siti Pauliena Mohd Bohari

The aim of this research is to investigate the wound healing process in in vitro by combining the Manihot esculenta aqueous extract and therapeutic ultrasound. Firstly, the optimization seeding densities of HSF cell 1184 in six-well plate, and then followed by the scratch assay experiment. The scratched that made was treated with the remedial treatments (Manihot esculenta aqueous extract only; ascorbic acid+ therapeutic ultrasound; Manihot esculenta aqueous extract+ ascorbic acid; Manihot esculenta aqueous extract+ therapeutic ultrasound and also the combination of these three materials). The rate of wound closure was observed and analysed at a time interval of 0, 2, 4, 6, 8, 10 and 24 h by using image J software. Then, the cells viability were analysed using the MTT assay. The result showed that Manihot esculenta aqueous extract coupled with specific dose therapeutic ultrasound represents a significantly high rate of wound closure at 96.10 % with the cell numbers at 5.44×105 cells/mL when compared to the other combination therapy. The finding of this study revealed that Manihot esculenta aqueous extract 200 µg/mL and the therapeutic ultrasound specific dose (3 MHz, 300 mWatt/cm2, 50% in 5 min) have the potential in accelerating wound healing process of cells in in vitro.


Author(s):  
Morenike Coker ◽  
Grace Adejo ◽  
Benjamin Emikpe ◽  
Victor Oyebanji

Background: This study examined the in vitro antibacterial property of extracts of Moringa oleifera and the effect of different concentrations of the ethyl-acetate extract on cutaneous wound using an ointment delivery base. The aim of the study was to screen the extracts with best antibacterial property and evaluate effectiveness of different concentrations of the best extract when delivery is modified to ensure prolonged contact and reduced frequency of administration using an ointment base delivery vehicle. Materials and Methods: Dried and pulverized leaves of Moringa oleifera were screened for secondary metabolites. Successive gradient extraction was carried out using n-hexane, ethyl acetate and methanol. Leaf extracts were screened against clinical wound isolates of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Proteus mirabilis using agar cup diffusion technique. The ethyl acetate extract was investigated for its healing efficiency on excision wound model in rats. The study made use of wistar rats (150-180 kg), randomized into Gentamicin, M. oleifera ointment (5% and 3.25%), and ointment base treatment groups. Treatments were applied topically on days 0, 7 and 14. The percentage wound closure rate was measured and histopathology of the healed wounds carried out. Results: In vitro antimicrobial screening showed that ethyl-acetate extract was effective against the test isolates. Topical application of ointment with 3.25% of the plant extract resulted in faster wound closure rate, rapid epithelization, resolution of granulation tissue, and remodeling at histology. Conclusion: This may be due to less interference by components of M. oleifera which appear to retard wound healing at higher concentrations. Therefore, M. oleifera 3.25% ointment preparation is recommended topically for wound healing.


2013 ◽  
Vol 203 (4) ◽  
pp. 691-709 ◽  
Author(s):  
Kai Safferling ◽  
Thomas Sütterlin ◽  
Kathi Westphal ◽  
Claudia Ernst ◽  
Kai Breuhahn ◽  
...  

Wound healing is a complex process in which a tissue’s individual cells have to be orchestrated in an efficient and robust way. We integrated multiplex protein analysis, immunohistochemical analysis, and whole-slide imaging into a novel medium-throughput platform for quantitatively capturing proliferation, differentiation, and migration in large numbers of organotypic skin cultures comprising epidermis and dermis. Using fluorescent time-lag staining, we were able to infer source and final destination of keratinocytes in the healing epidermis. This resulted in a novel extending shield reepithelialization mechanism, which we confirmed by computational multicellular modeling and perturbation of tongue extension. This work provides a consistent experimental and theoretical model for epidermal wound closure in 3D, negating the previously proposed concepts of epidermal tongue extension and highlighting the so far underestimated role of the surrounding tissue. Based on our findings, epidermal wound closure is a process in which cell behavior is orchestrated by a higher level of tissue control that 2D monolayer assays are not able to capture.


2019 ◽  
Vol 5 (7) ◽  
pp. eaaw3963 ◽  
Author(s):  
S. O. Blacklow ◽  
J. Li ◽  
B. R. Freedman ◽  
M. Zeidi ◽  
C. Chen ◽  
...  

Inspired by embryonic wound closure, we present mechanically active dressings to accelerate wound healing. Conventional dressings passively aid healing by maintaining moisture at wound sites. Recent developments have focused on drug and cell delivery to drive a healing process, but these methods are often complicated by drug side effects, sophisticated fabrication, and high cost. Here, we present novel active adhesive dressings consisting of thermoresponsive tough adhesive hydrogels that combine high stretchability, toughness, tissue adhesion, and antimicrobial function. They adhere strongly to the skin and actively contract wounds, in response to exposure to the skin temperature. In vitro and in vivo studies demonstrate their efficacy in accelerating and supporting skin wound healing. Finite element models validate and refine the wound contraction process enabled by these active adhesive dressings. This mechanobiological approach opens new avenues for wound management and may find broad utility in applications ranging from regenerative medicine to soft robotics.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Guanghui Yang ◽  
Glenn D. Prestwich ◽  
Brenda K. Mann

The progression of wound healing is a complicated but well-known process involving many factors, yet there are few products on the market that enhance and accelerate wound healing. This is particularly problematic in veterinary medicine where multiple species must be treated and large animals heal slower, oftentimes with complicating factors such as the development of exuberant granulation tissue. In this study a crosslinked-hyaluronic-acid (HA-) based biomaterial was used to treat wounds on multiple species: rats, dogs, and horses. The base molecule, thiolated carboxymethyl HA, was first found to increase keratinocyte proliferation in vitro. Crosslinked gels and films were then both found to enhance the rate of wound healing in rats and resulted in thicker epidermis than untreated controls. Crosslinked films were used to treat wounds on forelimbs of dogs and horses. Although wounds healed slower compared to rats, the films again enhanced wound healing compared to untreated controls, both in terms of wound closure and quality of tissue. This study indicates that these crosslinked HA-based biomaterials enhance wound healing across multiple species and therefore may prove particularly useful in veterinary medicine. Reduced wound closure times and better quality of healed tissue would decrease risk of infection and pain associated with open wounds.


2015 ◽  
Vol 77 (3) ◽  
Author(s):  
Nurul Ain Aqilla Wan Mustaffa ◽  
Rosnani Hasham ◽  
Mohamad Roji Sarmidi

Ficus deltoidea (Mas Cotek) is one of the popular herbs that has been used traditionally to alleviate illnesses. The present study aimed to investigate the in vitro wound healing activity of  F. deltoidea leaf extract on skin cell. Cell proliferative and migration assay were done on the Human Skin Fibroblast cell (HSF 1184) which were treated with different concentrations of F. deltoidea leaf extract. The data of wound closure were collected at time intervals of 0, 6, 12 and 24 hours and analyzed using ImageJ™ software. MTT assay revealed that the F. deltoidea leaf extract could induce cell proliferation at a dose dependent manner. F. deltoidea leaf extract significantly accelerated the wound closure process in comparison to cells treated with ascorbic acid and untreated cells in scratch assay. Following 24 hours of incubation, cells treated with 50 mg/mL of F. deltoidea leaf extract showed remarkable proliferative and wound closure effect with 143.67% and 5.96%, respectively as compared to other concentrations. Collectively, these findings suggested that F. deltoidea leaf extract possesses wound healing potential and may be useful for the development of efficient wound healing drug.


1996 ◽  
Vol 271 (5) ◽  
pp. L844-L853 ◽  
Author(s):  
C. Garat ◽  
F. Kheradmand ◽  
K. H. Albertine ◽  
H. G. Folkesson ◽  
M. A. Matthay

Adhesive interactions between cells and extracellular matrix proteins are important in cell attachment, migration, and proliferation. The present work defines the role of fibronectin (soluble and insoluble) compared with type I and type IV collagen on in vitro alveolar epithelial wound healing. Repeated video microscopy experiments demonstrated that the half-time of wound closure was decreased in the presence of soluble fibronectin (6.6 +/- 2.1 vs. 17.4 +/- 0.8 h in serum-free medium, P < 0.05). Video microscopy, electron microscopy, and vinculin distribution demonstrated the contribution of two main events during the repair process: the migration of epithelial cell sheets and the spreading of the cells. During the wound healing, the internuclear distance between two adjacent cells at the migrating edge of the wound was significantly increased 10 h after wounding in the presence of soluble fibronectin (67 +/- 3.0 vs. 45 +/- 1.5 microns in serum-free medium, P < 0.05), indicating that cell spreading is involved as part of the mechanism for wound closure. Compared with type I and type IV collagen, insoluble fibronectin was the most potent stimulus for alveolar type II cell motility and wound healing in the absence of other serum factors. These results demonstrate that alveolar epithelial wound healing can be modulated in vitro by the composition of the extracellular matrix, an effect that may be mediated by changes in cell shape.


Sign in / Sign up

Export Citation Format

Share Document