scholarly journals Modified Desolvation Method Enables Simple One-Step Synthesis of Gelatin Nanoparticles from Different Gelatin Types with Any Bloom Values

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1537
Author(s):  
Pavel Khramtsov ◽  
Oksana Burdina ◽  
Sergey Lazarev ◽  
Anastasia Novokshonova ◽  
Maria Bochkova ◽  
...  

Gelatin nanoparticles found numerous applications in drug delivery, bioimaging, immunotherapy, and vaccine development as well as in biotechnology and food science. Synthesis of gelatin nanoparticles is usually made by a two-step desolvation method, which, despite providing stable and homogeneous nanoparticles, has many limitations, namely complex procedure, low yields, and poor reproducibility of the first desolvation step. Herein, we present a modified one-step desolvation method, which enables the quick, simple, and reproducible synthesis of gelatin nanoparticles. Using the proposed method one can prepare gelatin nanoparticles from any type of gelatin with any bloom number, even with the lowest ones, which remains unattainable for the traditional two-step technique. The method relies on quick one-time addition of poor solvent (preferably isopropyl alcohol) to gelatin solution in the absence of stirring. We applied the modified desolvation method to synthesize nanoparticles from porcine, bovine, and fish gelatin with bloom values from 62 to 225 on the hundreds-of-milligram scale. Synthesized nanoparticles had average diameters between 130 and 190 nm and narrow size distribution. Yields of synthesis were 62–82% and can be further increased. Gelatin nanoparticles have good colloidal stability and withstand autoclaving. Moreover, they were non-toxic to human immune cells.

Nanomaterials ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 104 ◽  
Author(s):  
Rabeb El-Hnayn ◽  
Laetitia Canabady-Rochelle ◽  
Christophe Desmarets ◽  
Lavinia Balan ◽  
Hervé Rinnert ◽  
...  

2,2’-(Ethylenedioxy)bis(ethylamine)-functionalized graphene quantum dots (GQDs) were prepared under mild conditions from graphene oxide (GO) via oxidative fragmentation. The as-prepared GQDs have an average diameter of ca. 4 nm, possess good colloidal stability, and emit strong green-yellow light with a photoluminescence (PL) quantum yield of 22% upon excitation at 375 nm. We also demonstrated that the GQDs exhibit high photostability and the PL intensity is poorly affected while tuning the pH from 1 to 8. Finally, GQDs can be used to chelate Fe(II) and Cu(II) cations, scavenge radicals, and reduce Fe(III) into Fe(II). These chelating and reducing properties that associate to the low cytotoxicity of GQDs show that these nanoparticles are of high interest as antioxidants for health applications.


LWT ◽  
2020 ◽  
Vol 121 ◽  
pp. 108973 ◽  
Author(s):  
Hongrui Chen ◽  
Pujie Shi ◽  
Fengjiao Fan ◽  
Hui Chen ◽  
Chao Wu ◽  
...  

2020 ◽  
Vol 56 (71) ◽  
pp. 10293-10296
Author(s):  
Naoyuki Nishimura ◽  
Masahiro Tojo ◽  
Yuko Takeoka

Acetone, regarded as a poor solvent for perovskite materials, was found to be suitable for simple one-step synthesis of the perfluoroalkyl-based two-dimensional perovskite (C3F7CH2NH3)2PbBr4.


2019 ◽  
Vol 31 (3) ◽  
pp. 545-550
Author(s):  
Trinh Duy Nguyen ◽  
Phu Thuong Nhan Nguyen ◽  
Thien Hien Tran ◽  
Md. Rafiqul Islam ◽  
Kwon Taek Lim ◽  
...  

The poly(methylmethacrylate) (PMMA) grafted biocompatible hydroxyapatite nanocrystals (HAPs) hybrid nanocomposites (PMMA-g-HAPs) were synthesized by employing surface thiol-lactam initiated radical polymerization (TLIRP) through grafting from strategy. At first, the surface of HAPs was functionalized by 3-mercaptopropyl-trimethoxysilane in one-step process to prepare thiol immobilized HAPs (HAPs-SH). Subsequently, a controlled radical polymerization of MMA by using two component initiating system comprising of HAPs-SH and butyrolactam (BL) successfully afforded PMMA-g-HAPs nanocomposites. The resulting structure and morphological feature of nanocomposites was systematically characterized by FT-IR and XRD analyses. GPC studies of cleaved polymers from nanocomposites of different time revealed that the grafting polymerization from the surface of HAP was well controlled in nature. Moreover, the thermal property of the PMMA was found to be improved by incorporation of inorganic HAP nanoparticles in the polymer matrix as revealed by TGA and DSC studies. The colloidal stability of the synthesized nanocomposites was observed to be exceptionally good in organic solvents as suggested by the time dependent monitoring using UV-visible spectroscopy and captured digital photographs. The synthesized nanocomposites show a great promise for the safe application in tissue engineering and regenerative medicine.


2020 ◽  
Author(s):  
Linh Chi Nguyen ◽  
Christopher W Bakerlee ◽  
T Greg McKelvey ◽  
Sophie M Rose ◽  
Alexander J Norman ◽  
...  

Recently, human challenge trials (HCTs) have been proposed as a means to accelerate the development of an effective SARS-CoV-2 vaccine. In this paper, we discuss the potential role for such studies in the current COVID-19 pandemic. First, we present three scenarios in which HCTs could be useful: evaluating efficacy, converging on correlates of protection, and improving understanding of pathogenesis and the human immune response. We go on to outline the practical limitations of HCTs in these scenarios. We conclude that, while currently limited in their application, there are scenarios in which HCTs would be vastly beneficial and, thus, the option of using HCTs to accelerate COVID-19 vaccine development should be preserved. To this end, we recommend an immediate, coordinated effort by all stakeholders to (1) establish ethical and practical guidelines for the use of HCTs for COVID-19; (2) take the first steps toward an HCT, including preparing challenge virus under GMP and making preliminary logistical arrangements; and (3) commit to periodically re-evaluating the utility of HCTs amid the evolving pandemic.


Author(s):  
Anis Arisa Roslan ◽  
Hasnah Mohd Zaid ◽  
Siti Nur Azella Zaine ◽  
Mursyidah Umar ◽  
Beh Hoe Guan

Nanofluid contains nanoparticles that enhanced the property of the base fluid. However, the separating layer between the nanoparticles and base fluids may interfere the nanofluids performance. Studies have been made that surface modification of nanoparticles may improve the dispersion of nanoparticles in base fluids. This paper reports the study of the colloidal stability of surface modified nanoparticles using a polymer and an amino-silane. The nanoparticles were prepared by one-step and two-step methods using cobalt iron oxide nanoparticles with brine solution and deionized water as the base fluids. Functionalization by surface modification of the nanoparticles to enhance the nanofluids stability was carried out using (3-aminopropyl) triethoxysilane (APTES) and polyvinyl alcohol (PVA). Characterization using Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscope (FESEM) and X-ray Powder Diffraction (XRD) were performed to study the functionality and morphology of the synthesized nanoparticles. The extra IR peaks such as Si-O-Si at 1063 cm-1 for CoFe2O4-APTES and C=O at 1742 cm-1 for CoFe2O4-PVA showed that there are additional elements in the cobalt ferrite due to functionalization. The size of synthesized CoFe2O4-APTES ranged between 15.99 nm to 26.89 nm while CoFe2O4-PVA is from 25.70 nm to 54.16 nm. The stability of the nanofluid were determined via zeta potential measurements. CoFe2O4-APTES nanofluid has zeta potential of -35.7 mV compared to CoFe2O4-PVA at -15.5 mV.


Author(s):  
Linh Chi Nguyen ◽  
Christopher W Bakerlee ◽  
T Greg McKelvey ◽  
Sophie M Rose ◽  
Alexander J Norman ◽  
...  

Abstract Human challenge trials (HCTs) have been proposed as a means to accelerate SARS-CoV-2 vaccine development. We identify and discuss 3 potential use cases of HCTs in the current pandemic: evaluating efficacy, converging on correlates of protection, and improving understanding of pathogenesis and the human immune response. We outline the limitations of HCTs and find that HCTs are likely to be most useful for vaccine candidates currently in preclinical stages of development. We conclude that, while currently limited in their application, there are scenarios in which HCTs would be extremely beneficial. Therefore, the option of conducting HCTs to accelerate SARS-CoV-2 vaccine development should be preserved. As HCTs require many months of preparation, we recommend an immediate effort to (1) establish guidelines for HCTs for COVID-19; (2) take the first steps toward HCTs, including preparing challenge virus and making preliminary logistical arrangements; and (3) commit to periodically re-evaluating the utility of HCTs.


Sign in / Sign up

Export Citation Format

Share Document