scholarly journals AS1411 Aptamer Linked to DNA Nanostructures Diverts Its Traffic Inside Cancer Cells and Improves Its Therapeutic Efficacy

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1671
Author(s):  
Giulia Vindigni ◽  
Sofia Raniolo ◽  
Federico Iacovelli ◽  
Valeria Unida ◽  
Carmine Stolfi ◽  
...  

The nucleolin-binding G-quadruplex AS1411 aptamer has been widely used for cancer therapy and diagnosis and linked to nanoparticles for its selective targeting activity. We applied a computational and experimental integrated approach to study the effect of engineering AS1411 aptamer on an octahedral truncated DNA nanocage to obtain a nanostructure able to combine selective cancer-targeting and anti-tumor activity. The nanocages functionalized with one aptamer molecule (Apt-NC) displayed high stability in serum, were rapidly and selectively internalized in cancer cells through an AS1411-dependent mechanism, and showed over 200-fold increase in anti-cancer activity when compared with the free aptamer. Comparison of Apt-NCs and free AS1411 intracellular distribution showed that they traffic differently inside cells: Apt-NCs distributed through the endo-lysosomal pathway and were never found in the nuclei, while the free AS1411 was mostly found in the perinuclear region and in nucleoli. Molecular dynamics simulations indicated that the aptamer, when linked to the nanocage, sampled a limited conformational space, more confined than in the free state, which is characterized by a large number of metastable conformations. A different intracellular trafficking of Apt-NCs compared with free aptamer and the confined aptamer conformations induced by the nanocage were likely correlated with the high cytotoxic enhancement, suggesting a structure–function relationship for the AS1411 aptamer activity.

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2448 ◽  
Author(s):  
Yuan Lyu ◽  
Steven Kopcho ◽  
Folnetti A. Alvarez ◽  
Bryson C. Okeoma ◽  
Chioma M. Okeoma

BST-2 is a novel driver of cancer progression whose expression confers oncogenic properties to breast cancer cells. As such, targeting BST-2 in tumors may be an effective therapeutic approach against breast cancer. Here, we sought to develop potent cytotoxic anti-cancer agent using the second-generation BST-2-based anti-adhesion peptide, B18, as backbone. To this end, we designed a series of five B18-derived peptidomimetics. Among these, B18L, a cationic amphiphilic α-helical peptidomimetic, was selected as the drug lead because it displayed superior anti-cancer activity against both drug-resistant and drug-sensitive cancer cells, with minimal toxicity on normal cells. Probing mechanism of action using molecular dynamics simulations, biochemical and membrane biophysics studies, we observed that B18L binds BST-2 and possesses membranolytic characteristics. Furthermore, molecular biology studies show that B18L dysregulates cancer signaling pathways resulting in decreased Src and Erk1/2 phosphorylation, increased expression of pro-apoptotic Bcl2 proteins, caspase 3 cleavage products, as well as processing of the caspase substrate, poly (ADP-ribose) polymerase-1 (PARP-1), to the characteristic apoptotic fragment. These data indicate that through the coordinated regulation of membrane, mitochondrial and signaling events, B18L executes cancer cell death and thus has the potential to be developed into a potent and selective anti-cancer compound.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 45 ◽  
Author(s):  
Hany Marei ◽  
Patrizia Casalbore ◽  
Asmaa Althani ◽  
Valentina Coccè ◽  
Carlo Cenciarelli ◽  
...  

Exploitation of the potential ability of human olfactory bulb (hOB) cells to carry, release, and deliver an effective, targeted anticancer therapy within the central nervous system (CNS) milieu remains elusive. Previous studies have demonstrated the marked ability of several types of stem cells (such as mesenchymal stem cells (MSCs) to carry and release different anti-cancer agents such as paclitaxel (PTX). Herein we investigate the ability of human olfactory bulb neural stem cells (Hu-OBNSCs) to carry and release paclitaxel, producing effective cytotoxic effects against cancer cells. We isolated Hu-OBNSCs from the hOB, uploaded them with PTX, and studied their potential cytotoxic effects against cancer cells in vitro. Interestingly, the Hu-OBNSCs displayed a five-fold increase in their resistance to the cytotoxicity of PTX, and the PTX-uploaded Hu-OBNSCs were able to inhibit proliferation and invasion, and to trigger marked cytotoxic effects on glioblastoma multiforme (GBM) cancer cells, and Human Caucasian fetal pancreatic adenocarcinoma 1 (CFPAC-1) in vitro. Despite their ability to resist the cytotoxic activity of PTX, the mechanism by which Hu-OBNSCs acquire resistance to PTX is not yet explained. Collectively our data indicate the ability of the Hu-OBNSCs to resist PTX, and to trigger effective cytotoxic effects against GBM cancer cells and CFPAC-1. This indicates their potential to be used as a carrier/vehicle for targeted anti-cancer therapy within the CNS.


Author(s):  
Heena Pandya ◽  
Chirag N. Patel ◽  
Mansi Bhavsar ◽  
Pujan N. Pandya ◽  
Saumya K. Patel ◽  
...  

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype that lacks hormonal receptors. This reduces the therapeutic options for TNBC patients creating more focus on chemotherapy. Drug resistance has posed as a major hurdle in treating TNBC patients. Deregulation of drug transporter proteins is one of major factors that cause resistance to chemotherapeutic drugs. In this study, ABCC6 a drug transporter protein that is found dysregulated in several resistant cancer cells has been docked with natural compounds or phytochemicals with known anti-cancer activities. Subtrifloralactone G, a withanolide extracted from Deprea subtriflora is found to show highest binding energy with ABCC6 protein. Molecular dynamics simulations further prove the stability of the ABCC6 protein- Subtrifloralactone G ligand complex. ADMET analysis shows that phytochemical Subtrifloralactone G can be used as an anti-cancer therapeutic drug in treating resistant cancer cells. The study mainly focuses on the role of phytochemicals in treating resistant TNBC cells.


2020 ◽  
Author(s):  
Abhishek Singh ◽  
Reman K. Singh ◽  
G Naresh Patwari

The rational design of conformationally controlled foldable modules can lead to a deeper insight into the conformational space of complex biological molecules where non-covalent interactions such as hydrogen bonding and π-stacking are known to play a pivotal role. Squaramides are known to have excellent hydrogen bonding capabilities and hence, are ideal molecules for designing foldable modules that can mimic the secondary structures of bio-molecules. The π-stacking induced folding of bis-squaraines tethered using aliphatic primary and secondary-diamine linkers of varying length is explored with a simple strategy of invoking small perturbations involving the length linkers and degree of substitution. Solution phase NMR investigations in combination with molecular dynamics simulations suggest that bis-squaraines predominantly exist as extended conformations. Structures elucidated by X-ray crystallography confirmed a variety of folded and extended secondary conformations including hairpin turns and 𝛽-sheets which are determined by the hierarchy of π-stacking relative to N–H···O hydrogen bonds.


2020 ◽  
Author(s):  
Abhishek Singh ◽  
Reman K. Singh ◽  
G Naresh Patwari

The rational design of conformationally controlled foldable modules can lead to a deeper insight into the conformational space of complex biological molecules where non-covalent interactions such as hydrogen bonding and π-stacking are known to play a pivotal role. Squaramides are known to have excellent hydrogen bonding capabilities and hence, are ideal molecules for designing foldable modules that can mimic the secondary structures of bio-molecules. The π-stacking induced folding of bis-squaraines tethered using aliphatic primary and secondary-diamine linkers of varying length is explored with a simple strategy of invoking small perturbations involving the length linkers and degree of substitution. Solution phase NMR investigations in combination with molecular dynamics simulations suggest that bis-squaraines predominantly exist as extended conformations. Structures elucidated by X-ray crystallography confirmed a variety of folded and extended secondary conformations including hairpin turns and 𝛽-sheets which are determined by the hierarchy of π-stacking relative to N–H···O hydrogen bonds.


2018 ◽  
Vol 25 (28) ◽  
pp. 3319-3332 ◽  
Author(s):  
Chuanmin Zhang ◽  
Shubiao Zhang ◽  
Defu Zhi ◽  
Jingnan Cui

There are several mechanisms by which cancer cells develop resistance to treatments, including increasing anti-apoptosis, increasing drug efflux, inducing angiogenesis, enhancing DNA repair and altering cell cycle checkpoints. The drugs are hard to reach curative effects due to these resistance mechanisms. It has been suggested that liposomes based co-delivery systems, which can deliver drugs and genes to the same tumor cells and exhibit synergistic anti-cancer effects, could be used to overcome the resistance of cancer cells. As the co-delivery systems could simultaneously block two or more pathways, this might promote the death of cancer cells by sensitizing cells to death stimuli. This article provides a brief review on the liposomes based co-delivery systems to overcome cancer resistance by the synergistic effects of drugs and genes. Particularly, the synergistic effects of combinatorial anticancer drugs and genes in various cancer models employing multifunctional liposomes based co-delivery systems have been discussed. This review also gives new insights into the challenges of liposomes based co-delivery systems in the field of cancer therapy, by which we hope to provide some suggestions on the development of liposomes based co-delivery systems.


2020 ◽  
Vol 22 (9) ◽  
pp. 635-648 ◽  
Author(s):  
Korosh Mashayekh ◽  
Shahrzad Sharifi ◽  
Tahereh Damghani ◽  
Maryam Elyasi ◽  
Mohammad S. Avestan ◽  
...  

Background: c-Met kinase plays a critical role in a myriad of human cancers, and a massive scientific work was devoted to design more potent inhibitors. Objective: In this study, 16 molecular dynamics simulations of different complexes of potent c-Met inhibitors with U-shaped binding mode were carried out regarding the dynamic ensembles to design novel potent inhibitors. Methods: A cluster analysis was performed, and the most representative frame of each complex was subjected to the structure-based pharmacophore screening. The GOLD docking program investigated the interaction energy and pattern of output hits from the virtual screening. The most promising hits with the highest scoring values that showed critical interactions with c-Met were presented for ADME/Tox analysis. Results: The screening yielded 45,324 hits that all of them were subjected to the docking studies and 10 of them with the highest-scoring values having diverse structures were presented for ADME/Tox analyses. Conclusion: The results indicated that all the hits shared critical Pi-Pi stacked and hydrogen bond interactions with Tyr1230 and Met1160 respectively.


Author(s):  
Samad Beheshtirouy ◽  
Farhad Mirzaei ◽  
Shirin Eyvazi ◽  
Vahideh Tarhriz

: Breast cancer is a heterogeneous malignancy which is the second cause of mortality among women in the world. Increasing the resistance to anti-cancer drugs in breast cancer cells persuades researchers to search the novel therapies approaches for the treatment of the malignancy. Among the novel methods, therapeutic peptides which target and disrupt tumor cells have been of great interest. Therapeutic peptides are short amino acids monomer chains with high specificity to bind and modulate a protein interaction of interest. Several advantages of peptides such as specific binding on tumor cells surface, low molecular weight and low toxicity on normal cells make the peptides as an appealing therapeutic agents against solid tumors, particularly breast cancer. Also, National Institutes of Health (NIH) describes therapeutic peptides as suitable candidate for the treatment of drug-resistant breast cancer. In this review, we attempt to review the different therapeutic peptides against breast cancer cells which can be used in treatment and diagnosis of the malignancy. Meanwhile, we presented an overview of peptide vaccines which have been developed for the treatment of breast cancer.


2020 ◽  
Vol 15 (6) ◽  
pp. 482-491 ◽  
Author(s):  
Milena Kostadinova ◽  
Milena Mourdjeva

Mesenchymal stem/stromal cells (MSCs) are localized throughout the adult body as a small population in the stroma of the tissue concerned. In injury, tissue damage, or tumor formation, they are activated and leave their niche to migrate to the site of injury, where they release a plethora of growth factors, cytokines, and other bioactive molecules. With the accumulation of data about the interaction between MSCs and tumor cells, the dualistic role of MSCs remains unclear. However, a large number of studies have demonstrated the natural anti-tumor properties inherent in MSCs, so this is the basis for intensive research for new methods using MSCs as a tool to suppress cancer cell development. This review focuses specifically on advanced approaches in modifying MSCs to become a powerful, precision- targeted tool for killing cancer cells, but not normal healthy cells. Suppression of tumor growth by MSCs can be accomplished by inducing apoptosis or cell cycle arrest, suppressing tumor angiogenesis, or blocking mechanisms mediating metastasis. In addition, the chemosensitivity of cancer cells may be increased so that the dose of the chemotherapeutic agent used could be significantly reduced.


2020 ◽  
Vol 20 (17) ◽  
pp. 2125-2135
Author(s):  
Ci Ren ◽  
Chun Gao ◽  
Xiaomin Li ◽  
Jinfeng Xiong ◽  
Hui Shen ◽  
...  

Background: Persistent infection with the high-risk of human papillomavirus (HR-HPVs) is the primary etiological factor of cervical cancer; HR-HPVs express oncoproteins E6 and E7, both of which play key roles in the progression of cervical carcinogenesis. Zinc Finger Nucleases (ZFNs) targeting HPV E7 induce specific shear of the E7 gene, weakening the malignant biological effects, hence showing great potential for clinical transformation. Objective: Our aim was to develop a new comprehensive therapy for better clinical application of ZFNs. We here explored the anti-cancer efficiency of HPV targeted ZFNs combined with a platinum-based antineoplastic drug Cisplatin (DDP) and an HDAC inhibitor Trichostatin A (TSA). Methods: SiHa and HeLa cells were exposed to different concentrations of DDP and TSA; the appropriate concentrations for the following experiments were screened according to cell apoptosis. Then cells were grouped for combined or separate treatments; apoptosis, cell viability and proliferation ability were measured by flow cytometry detection, CCK-8 assays and colony formation assays. The xenograft experiments were also performed to determine the anti-cancer effects of the combined therapy. In addition, the HPV E7 and RB1 expressions were measured by western blot analysis. Results: Results showed that the combined therapy induced about two times more apoptosis than that of ZFNs alone in SiHa and HeLa cells, and much more inhibition of cell viability than either of the separate treatment. The colony formation ability was inhibited more than 80% by the co-treatment, the protein expression of HPV16/18E7 was down regulated and that of RB1 was elevated. In addition, the xenografts experiment showed a synergistic effect between DDP and TSA together with ZFNs. Conclusion: Our results demonstrated that ZFNs combined with DDP or TSA functioned effectively in cervical cancer cells, and it provided novel ideas for the prevention and treatment of HPV-related cervical malignancies.


Sign in / Sign up

Export Citation Format

Share Document