scholarly journals Development, Evaluation, and Molecular Docking of Oral Dissolving Film of Atenolol

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1727
Author(s):  
Karina Citra Rani ◽  
Nani Parfati ◽  
Ni Luh Dewi Aryani ◽  
Agnes Nuniek Winantari ◽  
Endang Wahyu Fitriani ◽  
...  

The development of oral dissolving film (ODF) of atenolol is an attempt to enhance convenience and compliance for geriatric patients suffering from hypertension. Film former is the most essential component in ODF that determines the physical characteristic and drug release. In this study, three different types of film former including HPMC E5 4% (w/v), 5% (w/v), CMC-Na 3% (w/v), 4% (w/v), and Na-alginate 2.5% (w/v), 3% (w/v) were optimized in Formula 1 (F1) to Formula 6 (F6), respectively. A solvent casting method was employed to develop ODF of atenolol. The films formed by HPMC E5 produced a smooth and flexible surface, whereas CMC-Na and Na-alginate produced gritty textured films. Satisfactory results were obtained from several physical parameters such as film thickness, folding endurance, swelling index, and disintegration time. The homogeneity, drug content, and dissolution properties of ODF with HPMC exhibited better characteristics than the other formulas. Formula 1 exhibited the highest drug release compared to the other ODFs. The molecular docking results showed that there was a hydrogen bonding between atenolol and film formers which was also supported by the FTIR spectrum. The findings of this study suggest that HPMC E5 is the most favorable film former for ODF of atenolol.

Author(s):  
SHUBHAM BIYANI ◽  
SARANG MALGIRWAR ◽  
RAJESHWAR KSHIRSAGAR ◽  
SAGAR KOTHAWADE

Objective: The intension of the present study includes fabrication and optimization of mouth dissolving film loaded with Chlorothalidone by solvent evaporation techniques using two components and their three levels as multilevel Categoric design. Methods: Major problem associated with the development of film loaded with BCS class II drug is to increase its solubility. Here the Chlorothalidone solubility achieved by co-solvents, such as methanol. After dissolving the drug in co-solvent, this drug solution is poured into an aqueous dispersion of Hydroxypropyl Methylcellulose E5 (HPMC E5) and Polyethylene glycol 400 (PEG 400). The two independent variables selected are factor A (concentration of HPMC E5) and factor B (concentration of PEG 400) was selected on the basis of preliminary trials. The percentage drug release (R1), Disintegration time in sec (R2) and folding endurance (R3) were selected as dependent variables. Here HPMC E5 used as a film former, PEG 400 as plasticizer, mannitol as bulking agent, Sodium starch glycolate as a disintegrating agent, tween 80 as the surfactant, tartaric acid as saliva stimulating agent, sodium saccharin as a sweetener and orange flavour etc. These fabricated films were evaluated for physicochemical properties, disintegration time and In vitro drug release study. Results: The formulation F6 has more favorable responses as per multilevel categoric design is % drug release about 98.95 %, average disintegration time about 24.33 second and folding endurance is 117. Thus formulation F6 was preferred as an optimized formulation. Conclusion: The present formulation delivers medicament accurately with good therapeutic efficiency by oral administration, this mouth dissolving films having a rapid onset of action than conventional tablet formulations.


2018 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Manar Adnan Tamer ◽  
Shaimaa Nazar Abd-al Hammid ◽  
Balqis Ahmed

Objective: The aim of this study was to formulate and in vitro evaluate fast dissolving oral film of practically insoluble bromocriptine mesylate to enhance its solubility and to improve its oral bioavailability by avoiding first pass effect as well as to produce an immediate release action of the drug from the film for an efficient management of diabetes mellitus type II in addition to an improvement of the patient compliance to this patient-friendly dosage form.Methods: The films were prepared by the solvent casting method using hydroxypropyl methylcellulose of grades (E3, E5, E15), polyvinyl alcohol (PVA), pectin and gelatin as film-forming polymers in addition to polyethene glycol 400 (PEG400), propylene glycol (PG) and glycerin were used as a plasticizer. Poloxamer 407 was used as a surfactant, sodium saccharin as a sweetening agent, citric acid as a saliva stimulating agent, vanilla as a flavouring agent and crospovidone as a super disintegrant. The prepared films then tested for physical characterization, thickness, weight uniformity, mechanical characteristics (folding endurance, tensile strength, percent elongation and Young's modulus), surface pH, in vitro disintegration time, drug content and an in vitro drug release.Results: Films were found to be satisfactory when evaluated for physical characterization, thickness, weight uniformity, mechanical tests, in vitro disintegration time, folding endurance, drug content and an in vitro drug release. The surface pH of all the films was found to be neutral or minor change. Films in vitro drug release studies were also done using USP dissolution apparatus type II (paddle type). The in vitro drug release profile in the optimized formulation F14 was gave 86.8 % of drug released at 2 min. The optimized formulation F14 was also showed satisfactory pH (6.2±0.2), drug content (99.2±0.5%), the disintegration time of 9.2±0.1 seconds and the time needed for 80% of medication to be released (T80 %) was 1.35 minute.Conclusion: The bromocriptine mesylate fast dissolving oral film was formulated. The given film disintegrates within nine seconds which release the drug rapidly and gives an action.


Author(s):  
SATYAJIT SAHOO ◽  
KIRTI MALVIYA ◽  
AMI MAKWANA ◽  
PRASANTA KUMAR MOHAPATRA ◽  
ASITRANJAN SAHU

Objective: The purpose of this investigation was to formulate, optimize and evaluate sublingual film of Enalapril maleate for rapid management of Hypertension. Methods: Sublingual films were prepared by solvent casting method. Present investigation were formulated by using HPMC E 15 (X1) as polymer and Polyethylene glycol (X2) as plasticizer were chosen as independent variables in 32 full factorial design while Tensile strength (TS), Disintegration time (DT) and % Cumulative drug release at 10 min. (% CDR) were taken as dependent variables. The various physical parameters were evaluated for sublingual films such as thickness, tensile strength, folding endurance, disintegration time, surface pH and % CDR. Results: From the experimental study, it was concluded that the optimized batch F8 showed 98.6 %, the highest release of the drug. Stability study was performed by taking an optimized formulation and it was observed stable. The sublingual films showed acceptable results in all studies such as thickness, tensile strength, folding endurance, disintegration time, surface pH and % CDR at 10 min. R2 values for Tensile Strength (Y1), Disintegration time (Y2) and % cumulative drug release at 10 min. of Enalaprilmaleate(Y3) found to be 0.9852, 0.9829 and 0.9641 respectively. Thus, a good correlation between dependent and independent variables was developed. Conclusion: 32 full factorial design was successfully applied during preparation, optimization and evaluation of sublingual films of Enalapril maleate. The present investigation showed quick disintegration and fast release of the drug for rapid management of Hypertension.


2021 ◽  
Vol 2 (1) ◽  
pp. 20-25
Author(s):  
F.M. Yushau ◽  
◽  
S. Awwalu ◽  
A. Musa

Background: Metformin tablets are oral anti hyperglycaemic agents that are used as the first line agent in the management of type 2 diabetes mellitus. The proliferation of many brands of metformin tablets in the market has led to availability of different types; some of which may be substandard or counterfeit. Thus, the need to determine the quality of the various brands marketed in Zaria. Objective: To compare the quality of different brands of metformin tablets that are available in Zaria using British pharmacopoeia standards. Method: Seven brands of metformin tablet (500 mg) were randomly sampled from various community pharmacies within Zaria and analysed with respect to identification, weight variation, friability, disintegration time, dissolution and drug content assay using Pharmacopoeial standards. Results: Except for the dissolution and assay tests, the results of all the other parameters for the various brands were within the Pharmacopoeial limits. The percentage content of metformin in brand 2 was 89.90 % which is outside the official range (95 – 105 %). Furthermore, only 70.61, 75.34 and 70.58 % of metformin dissolved from brands 2, 4 and 7 respectively, after 30 minutes of the dissolution test. Conclusion: It can be concluded that of the seven brands evaluated, only four brands are interchangeable with each other and can be substitutes of each other.


2014 ◽  
Vol 50 (4) ◽  
pp. 799-818 ◽  
Author(s):  
Tariq Ali ◽  
Muhammad Harris Shoaib ◽  
Rabia Ismail Yousuf ◽  
Sabahat Jabeen ◽  
Iyad Naeem Muhammad ◽  
...  

The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2) results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.


Author(s):  
Hafsa Mohammadi ◽  
V Hemanath Kumar

The aim of the present work is to develop fast dissolving tablets from the solid dispersion of Tenoxicam for enhancement of solubility. The solid dispersions of Tenoxicam were prepared with Kollidon CL, PVP K30 and Poloxamer 127, in 1:1:1, 1:2:1 and 1:3:1 by using solvent evaporation method. The prepared solid dispersions were analyzed for all the physical parameters, drug: carrier interactions like FTIR, SEM, XRD. Solid dispersions showed a better dissolution compared to the pure drugs and among all the other formulations SD9 shows high percentage drug release i.e. 99.11 ± 5.17% for 90 min and selected as an optimized formulation for the preparation of fast disintegrating tablets of Tenoxicam. Gellan Gum, Fenugreek Seed Mucilage and L-HPC (low, middle and high concentrations) used in the preparation of fast disintegrating tablets prepared by direct compression method using 33 Response surface method. The post compression parameters of all the prepared tablets were within the limits. TF13 was selected as optimized formulation based on its highest disintegration time 36 sec and drug release 99.68 ± 1.52% for 10 min. Drug-excipients characterization also revealed that there is no interaction. Hence it concluded that solid dispersions incorporated fast disintegrating tablets is very useful approach for immediate release of Tenoxicam in the efficient management of inflammation and pain.


Author(s):  
Bobde Suwarna Suresh ◽  
Tank Hemraj M

Objective: The present research aims at formulating a mouth dissolving sublingual film of fixed dose combination of doxylamine succinate (DS) and pyridoxine hydrochloride (PH) that would provide faster onset of action and hence relief from the condition of nausea and vomiting in pregnancy.Methods: Mouth dissolving films were prepared using a solvent casting technique. A 23 full-factorial design of eight formulations was set up with three independent variables: X1 - polymer 1 HPMC E15 concentration, X2 - polymer 2 HPMC E5 concentration, and X3 - plasticizer PEG 400 concentration. The responses, i.e., dependent variables measured for the study were Y1 disintegration time in seconds, Y2 tensile strength in kg/cm2, Y3 drug release in the percentage of DS, and Y4 drug release in the percentage of PH. All the formulations were evaluated for physicochemical parameters such as clarity, weight, thickness, folding endurance, surface pH, and content. The design expert software 11.0 trial version was used for statistical analysis of the responses.Results and Conclusion: All the film formulations were found to be transparent, non-tacky, and easily peelable having the satisfactory tensile strength and folding endurance. The concentration of polymer 1 and 2 was found to have a significant effect on disintegration time and drug release of mouth dissolving films. The best film formulation DP1 was found to have a disintegration time of 77.66 s and found to release 96.22% of DS and 95.43% of pyridoxine HCl in 21 min.


2015 ◽  
Vol 2 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Sateesh K. Vemula ◽  
Santhosh G. Reddy

Present study efforts are focusing to develop the flurbiprofen fast dissolving tablets using sublimation method to enhance the dissolution rate. In this study an attempt was made to fasten the drug release from the oral tablets by incorporating the sublimating agents in the presence of crosspovidone as superdisintegrant and studied the effect on dissolution rate when compared to conventional tablets. In the present study, sublimated fast dissolving tablets were prepared by direct compression method. The prepared tablets were characterized for physical parameters and drug release behavior and the best formulation was subjected to pharmacokinetic studies. From in vitro drug release studies, the formulation F2 showed fast drug release of about 99.94±0.26% in 30 min, and disintegration time 34.42 ± 0.74 sec. The percent drug release in 15 min (Q15) and initial dissolution rate for formulation F2 was 91.46±1.42%, 6.10%/min. The dissolution efficiency was found to be 53.44 and it is increased by 4.5 fold with F2 sublimated tablets. From the pharmacokinetic evaluation, the conventional tablets producing peak plasma concentration (Cmax) was 9023.68±561.83 ng/ml at 3 h Tmax and F2 sublimated tablets showed Cmax 11126.71±123.56 ng/ml at 2 h Tmax. The area under the curve for the conventional and F2 tablets was 30968.42±541.52 and 42973.66±568.13 ng h/ml. Hence, the development of flurbiprofen fast dissolving tablets by sublimation method is a right way to enhance not only the dissolution rate but also the absorption rate.


Author(s):  
Deshkar S. S. ◽  
Pore A. R.

Platelets play an important role in hemostasis during tissue injury, which blocks the defect and terminates blood loss. Platelet aggregation inhibitors are widely used in treatment of cardiovascular disorders and Peripheral arterial disease. Clopidogrel bisulphate and Cilostazol, are FDA approved BCS class II drugs, used in treatment of Platelet aggregation, peripheral arterial disease and intermittent claudication. The aim of the present study was to develop an immediate release pellets for combination of Clopidogrel bisulphate and Cilostazol using extrusion spheronization technique. The effects of spheronization speed(X1) and binder concentration (PVP K30) (X2), on size of pellets, disintegration time and drug release were studied using 32 full factorial design. The surface response and counter plot were drawn to facilitate an understanding of the contribution of the variables and their interaction. From the results, speed of spheronization of 1100 rpm and 5% concentration of PVP K30, were selected. In vitro drug release studies revealed more than 80% of clopidogrel bisulphate release and more than 75% of cilostazol release within 30 min of dissolution which complied with the pharmacopoeal limits. Film coated pellets did not show significant change in the drug release. DSC and FTIR studies revealed no interaction of drugs and excipient during pellet formulation. The pellet formulations of clopidogrel and cilostazol were found to be stable when stored at 40ºC±2ºC/ 75%RH±5%RH for 2 months. Conclusively, clopidogrel bisulphate and cilostazol pellet fixed dose combination could be successfully developed by design of experimentation and complied with pharmacopoeal limits.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Haarika B ◽  
Jyothi Sri S ◽  
K Abbulu

The purpose of present investigation was to develop floating matrix tablets of gemifloxacin mesylate, which after oral administration could prolong the gastric residence time, increase the drug bioavailability and diminish the side effects of irritating drugs. Tablets containing drug, various viscosity grades of hydroxypropyl methylcellulose such as HPMC K4M and HPMC K15M as matrix forming agent, Sodium bicarbonate as gas-forming agent and different additives were tested for their usefulness in formulating gastric floating tablets by direct compression method. The physical parameters, in vitro buoyancy, release characteristics and in vivo radiographic study were investigated in this study. The gemifloxacin mesylate floating tablets were prepared using HPMC K4M polymer giving more sustained drug release than the tablet containing HPMC K15M. All these formulations showed floating lag time of 30 to 47 sec and total floating time more than 12 h. The drug release was decreased when polymer concentration increases and gas generating agent decreases. Formulation that contains maximum concen-tration of both HPMC K15M and sodium bicarbonate (F9) showing sufficiently sustained with 99.2% of drug release at 12 h. The drug release from optimized formulation follows Higuchi model that indicates the diffusion controlled release. The best formulation (F9) was selected based on in vitro characteristics and used in vivo radiographic studies by incorporating barium sulphate as a radio-opaque agent and the tablet remained in the stomach for about 6 h.   


Sign in / Sign up

Export Citation Format

Share Document