scholarly journals Formulation and Pharmacokinetics of Flurbiprofen Sublimated Fast Dissolving Tablets#

2015 ◽  
Vol 2 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Sateesh K. Vemula ◽  
Santhosh G. Reddy

Present study efforts are focusing to develop the flurbiprofen fast dissolving tablets using sublimation method to enhance the dissolution rate. In this study an attempt was made to fasten the drug release from the oral tablets by incorporating the sublimating agents in the presence of crosspovidone as superdisintegrant and studied the effect on dissolution rate when compared to conventional tablets. In the present study, sublimated fast dissolving tablets were prepared by direct compression method. The prepared tablets were characterized for physical parameters and drug release behavior and the best formulation was subjected to pharmacokinetic studies. From in vitro drug release studies, the formulation F2 showed fast drug release of about 99.94±0.26% in 30 min, and disintegration time 34.42 ± 0.74 sec. The percent drug release in 15 min (Q15) and initial dissolution rate for formulation F2 was 91.46±1.42%, 6.10%/min. The dissolution efficiency was found to be 53.44 and it is increased by 4.5 fold with F2 sublimated tablets. From the pharmacokinetic evaluation, the conventional tablets producing peak plasma concentration (Cmax) was 9023.68±561.83 ng/ml at 3 h Tmax and F2 sublimated tablets showed Cmax 11126.71±123.56 ng/ml at 2 h Tmax. The area under the curve for the conventional and F2 tablets was 30968.42±541.52 and 42973.66±568.13 ng h/ml. Hence, the development of flurbiprofen fast dissolving tablets by sublimation method is a right way to enhance not only the dissolution rate but also the absorption rate.

Author(s):  
R. SANTOSH KUMAR ◽  
SAHITHI MUDILI

Objective: To optimize aceclofenac fast dissolving tablets employing starch glutamate as novel superdisintegrant by 23factorial design to improve bioavailability and enhance patient compliance. Methods: Starch glutamate was prepared by the esterification process. Starch glutamate physical and micromeritics properties had been evaluated and the prepared starch glutamate was used as a superdisintegrant for the formulation of the fast dissolving tablets of aceclofenac by direct compression method and optimized by employing 23factorial design. The prepared aceclofenac fast dissolving tablets were evaluated for post compression parameters as well as in vitro and in vivo release characteristics. Optimized formulation stability studies were performed at accelerated conditions for 6 mo as per ICH and WHO guidelines. Results: The prepared starch glutamate was amorphous, insoluble in aqueous and organic solvents were tested. Fast dissolving tablets of aceclofenac were formulated by employing starch glutamate as a superdisintegrant showed good tablet properties and showed an increased dissolution efficiency of the drug. Among all the formulations (F1 to F8), the formulation F8 containing 5% concentration of starch glutamate, croscarmellose sodium and, crospovidone as a superdisintegrants showed 99.7±0.15% of drug release within 5 min. Whereas the formulation F2 containing 5% concentration of starch glutamate, drug release characters were comparable to the formulation F8. Optimized formulation F2 attained peak plasma concentration within a short period and showed increased relative bioavailability of the drug. Conclusion: From the physical properties, disintegration time, in vitro dissolution studies and pharmacokinetic studies, it was concluded that fast dissolving tablets of aceclofenac tablets formulated by employing starch glutamate as a superdisintegrant enhanced the dissolution efficiency and improved the bioavailability of the drug as compared to the pure drug and stable.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Praveen Kumar Gaur ◽  
Shikha Mishra ◽  
Meenakshi Bajpai ◽  
Anushika Mishra

Solid lipid nanoparticle is an efficient lipid based drug delivery system which can enhance the bioavailability of poorly water soluble drugs. Efavirenz is a highly lipophilic drug from nonnucleoside inhibitor category for treatment of HIV. Present work illustrates development of an SLN formulation for Efavirenz with increased bioavailability. At first, suitable lipid component and surfactant were chosen. SLNs were prepared and analyzed for physical parameters, stability, and pharmacokinetic profile. Efavirenz loaded SLNs were formulated using Glyceryl monostearate as main lipid and Tween 80 as surfactant. ESLN-3 has shown mean particle size of124.5±3.2nm with a PDI value of 0.234, negative zeta potential, and 86% drug entrapment.In vitrodrug release study has shown 60.6–98.22% drug release in 24 h by various SLN formulations. Optimized SLNs have shown good stability at 40°C±2°C and75±5% relative humidity (RH) for 180 days. ESLN-3 exhibited 5.32-fold increase in peak plasma concentration (Cmax⁡) and 10.98-fold increase in AUC in comparison to Efavirenz suspension (ES).


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Sateesh Kumar Vemula ◽  
Mohan Vangala

The intention of present research is to formulate and develop the meclizine hydrochloride fast dissolving tablets using sublimation method to enhance the dissolution rate. In this study an attempt was made to fasten the drug release from the oral tablets by incorporating the superdisintegrants and camphor as sublimating agent. The prepared fast dissolving tablets were subjected to precompression properties and characterized for hardness, weight variation, friability, wetting time, water absorption ratio, and disintegration time. From in vitro release studies, the formulation F9 exhibited fast release profile of about 98.61% in 30 min, and disintegration time 47 sec when compared with other formulations. The percent drug release in 30 min (Q30) and initial dissolution rate for formulation F9 was 98.61 ± 0.25%, 3.29%/min. These were very much higher compared to marketed tablets (65.43 ± 0.57%, 2.18%/min). The dissolution efficiency was found to be 63.37 and it is increased by 1.4-fold with F9 FDT tablets compared to marketed tablets. Differential scanning calorimetry and Fourier transform infrared spectroscopy studies revealed that there was no possibility of interactions. Thus the development of meclizine hydrochloride fast dissolving tablets by sublimation method is a suitable approach to improve the dissolution rate.


2014 ◽  
Vol 50 (4) ◽  
pp. 799-818 ◽  
Author(s):  
Tariq Ali ◽  
Muhammad Harris Shoaib ◽  
Rabia Ismail Yousuf ◽  
Sabahat Jabeen ◽  
Iyad Naeem Muhammad ◽  
...  

The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2) results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.


1993 ◽  
Vol 12 (3) ◽  
pp. 207-213 ◽  
Author(s):  
T.R. Auton ◽  
J.D. Ramsey ◽  
B.H. Woollen

In a previous paper it was demonstrated that dermal absorption of the herbicide fluazifop-butyl in the rat could be modelled by combining a knowledge of the pharmacokinetics following intravenous and oral dosing with in vitro measurements of dermal absorption. This paper demonstrates the validation of a similar model for the dermal absorption of fluazifop-butyl in man. Pharmacokinetic parameters derived from an oral dosing study are combined in a mathematical model with in vitro measurements of dermal absorption of fluazifop-butyl. Model predictions of the rate and extent of dermal absorption of fluazifop-butyl are compared with the results of dermal absorption studies in human volunteers. Good agreement is found between the model predictions and the experimental measurements. These results have implications for improved risk assessment. The model provides a tool for risk assessment based on both internal dose (e.g. peak plasma concentration, plasma area under the curve) as well as total absorbed dose. However, further work is required to evaluate whether the same techniques are applicable to a wider range of compounds.


Author(s):  
SANTOSH KUMAR R ◽  
SAHITHI MUDILI

Objective: The main aim of the present work is to enhance the solubility and bioavailability of the ibuprofen by formulating it into fast-dissolving tablets employing starch glutamate as a novel superdisintegrant. Materials and Methods: Starch glutamate was prepared from native potato starch and glutamic acid by the esterification process. Drug-excipient compatibility studies were performed between the starch glutamate and ibuprofen with the help of Fourier transform infrared spectroscopy, and differential scanning calorimetry techniques. Ibuprofen fast dissolving tablets were formulated employing different superdisintegrants along with the starch glutamate (a novel superdisintegrant) by the direct compression method. The prepared ibuprofen fast-dissolving tablets were evaluated for various pre- and post-compression parameters along with the in vitro and in vivo release characteristics. Optimized formulation stability studies were performed at accelerated conditions for 6 months as per the International Conference on Harmonization (ICH) and WHO guidelines. Results: Drug-excipient compatibility studies indicated that prepared starch glutamate was compatible with ibuprofen drug, and it can be used as a superdisintegrant in the formulation of fast-dissolving tablets. Fast-dissolving tablets of ibuprofen were formulated by employing starch glutamate as a superdisintegrant showed good tablet properties and showed an increased dissolution efficiency of the drug. Among all the formulations (F1–F8), the formulation F4 which contains 5% starch glutamate and 5% croscarmellose sodium as superdisintegrants showed 99.7±0.34% drug dissolution within 5 min. Peak plasma concentration of optimized formulation F2 was achieved in a short period of time and increased relative bioavailability and F2 was found to be stable during accelerated stability testing as per the ICH stability guidelines. Conclusion: From drug-excipient compatibility studies, disintegration time, in vitro dissolution studies, and pharmacokinetic studies, it was concluded that starch glutamate can be used as a superdisintegrant in the formulation of fast-dissolving tablets to increase the solubility as well as bioavailability of the poorly soluble drugs.


2020 ◽  
Vol 10 (3-s) ◽  
pp. 17-25
Author(s):  
Inder Kumar ◽  
Dipima Chaudhary ◽  
Bhumika Thakur ◽  
Vinay Pandit

Objective: In the present research work, fast dissolving tablets of Piroxicam were formulated by two different techniques i.e. direct compression method and sublimation method using different superdisintegrants. Methods: Twelve formulations were prepared (PXM1 to PXM12) in which first six formulation were prepared by direct compression technique and other six formulation were prepared by sublimation method by using camphor as a sublimating agent. Result and Discussion: All the formulations were subjected for precompression, post compression parameters, and shows all the data within the specific limits. Formulation PXM4 containing 5 % crospovidone showed 99.480 ± 0.291 % drug release in 20 min which was more than the drug release of rest of the formulations. The optimized formulation PXM4 was compared with the marketed formulation and it revealed that drug release of PXM4 was found to be 99.397 ± 0.751 % in 20 min, which was greater than the marketed formulation. Finally, results were statistically analysed by the application of one way ANOVA and t-test. The stability study of the optimized formulation PXM4 showed no significant changes in, drug content, disintegration time and in-vitro drug release. Conclusion: Piroxicam can be successfully prepared using direct compression technique and it will enhance the drug dissolution, which will further increase absorption and bioavailability of the drug. Keywords: Direct compression, fast dissolving tablets, sublimation, Piroxicam.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Sateesh Kumar Vemula ◽  
Vijaya Kumar Bontha

The rationale of the present study is to formulate flurbiprofen colon targeted compression coated tablets using guar gum to improve the therapeutic efficacy by increasing drug levels in colon, and also to reduce the side effects in upper gastrointestinal tract. Direct compression method was used to prepare flurbiprofen core tablets, and they were compression coated with guar gum. Then the tablets were optimized with the support ofin vitrodissolution studies, and further it was proved by pharmacokinetic studies. The optimized formulation (F4) showed almost complete drug release in the colon (99.86%) within 24 h without drug loss in the initial lag period of 5 h (only 6.84% drug release was observed during this period). The pharmacokinetic estimations proved the capability of guar gum compression coated tablets to achieve colon targeting. TheCmaxof colon targeted tablets was 11956.15 ng/mL atTmaxof 10 h whereas it was 15677.52 ng/mL at 3 h in case of immediate release tablets. The area under the curve for the immediate release and compression coated tablets was 40385.78 and 78214.50 ng-h/mL and the mean resident time was 3.49 and 10.78 h, respectively. In conclusion, formulation of guar gum compression coated tablets was appropriate for colon targeting of flurbiprofen.


1989 ◽  
Vol 61 (03) ◽  
pp. 497-501 ◽  
Author(s):  
E Seifried ◽  
P Tanswell ◽  
D Ellbrück ◽  
W Haerer ◽  
A Schmidt

SummaryPharmacokinetics and systemic effects of recombinant tissue type plasminogen activator (rt-PA) were determined during coronary thrombolysis in 12 acute myocardial infarction patients using a consecutive intravenous infusion regimen. Ten mg rt-PA were infused in 2 minutes resulting in a peak plasma concentration (mean ±SD) of 3310±950 ng/ml, followed by 50 mg in 1 h and 30 mg in 1.5 h yielding steady state plasma levels of. 2210±470 nglml and 930±200 ng/ml, respectively. All patients received intravenous heparin. Total clearance of rt-PA was 380±74 ml/min, t,½α was 3.6±0.9 min and t,½β was 16±5.4 min.After 90 min, in plasma samples containing anti-rt-PA-IgG to inhibit in vitro effects, fibrinogen was decreased to 54%, plasminogen to 52%, α2-antiplasmin to 25%, α2-macroglobulin to 90% and antithrombin III to 85% of initial values. Coagulation times were prolonged and fibrin D-dimer concentrations increased from 0.40 to 2.7 μg/ml. It is concluded that pharmacokinetics of rt-PA show low interpatient variability and that its short mean residence time in plasma allows precise control of therapy. Apart from its moderate effect on the haemostatic system, rt-PA appears to lyse a fibrin pool in addition to the coronary thrombus.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Haarika B ◽  
Jyothi Sri S ◽  
K Abbulu

The purpose of present investigation was to develop floating matrix tablets of gemifloxacin mesylate, which after oral administration could prolong the gastric residence time, increase the drug bioavailability and diminish the side effects of irritating drugs. Tablets containing drug, various viscosity grades of hydroxypropyl methylcellulose such as HPMC K4M and HPMC K15M as matrix forming agent, Sodium bicarbonate as gas-forming agent and different additives were tested for their usefulness in formulating gastric floating tablets by direct compression method. The physical parameters, in vitro buoyancy, release characteristics and in vivo radiographic study were investigated in this study. The gemifloxacin mesylate floating tablets were prepared using HPMC K4M polymer giving more sustained drug release than the tablet containing HPMC K15M. All these formulations showed floating lag time of 30 to 47 sec and total floating time more than 12 h. The drug release was decreased when polymer concentration increases and gas generating agent decreases. Formulation that contains maximum concen-tration of both HPMC K15M and sodium bicarbonate (F9) showing sufficiently sustained with 99.2% of drug release at 12 h. The drug release from optimized formulation follows Higuchi model that indicates the diffusion controlled release. The best formulation (F9) was selected based on in vitro characteristics and used in vivo radiographic studies by incorporating barium sulphate as a radio-opaque agent and the tablet remained in the stomach for about 6 h.   


Sign in / Sign up

Export Citation Format

Share Document