scholarly journals A Shock-in-Jet Synchrotron Mirror Model for Blazars

Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1112-1122
Author(s):  
Markus Böttcher

Reinhard Schlickeiser has made groundbreaking contributions to various aspects of blazar physics, including diffusive shock acceleration, the theory of synchrotron radiation, the production of gamma-rays through Compton scattering in various astrophysical sources, etc. This paper, describing the development of a self-consistent shock-in-jet model for blazars with a synchrotron mirror feature, is therefore an appropriate contribution to a Special Issue in honor of Reinhard Schlickeiser’s 70th birthday. The model is based on our previous development of a self-consistent shock-in-jet model with relativistic thermal and non-thermal particle distributions evaluated via Monte-Carlo simulations of diffusive shock acceleration, and time-dependent radiative transport. This model has been very successful in modeling spectral variability patterns of several blazars, but has difficulties describing orphan flares, i.e., high-energy flares without a significant counterpart in the low-frequency (synchrotron) radiation component. As a solution, this paper investigates the possibility of a synchrotron mirror component within the shock-in-jet model. It is demonstrated that orphan flares result naturally in this scenario. The model’s applicability to a recently observed orphan gamma-ray flare in the blazar 3C279 is discussed and it is found that only orphan flares with mild (≲ a factor of 2–3) enhancements of the Compton dominance can be reproduced in a synchrotron-mirror scenario, if no additional parameter changes are invoked.

2014 ◽  
Vol 28 ◽  
pp. 1460167 ◽  
Author(s):  
MATTHEW G. BARING ◽  
MARKUS BÖTTCHER ◽  
ERROL J. SUMMERLIN

Diffusive shock acceleration (DSA) at relativistic shocks is likely to be an important acceleration mechanism in various astrophysical jet sources, including radio-loud AGN. An important recent development for blazar science is the ability of Fermi-LAT data to pin down the power-law index of the high energy portion of emission in these sources, and therefore also the index of the underlying non-thermal particle population. This diagnostic potential was not possible prior to Fermi launch, when gamma-ray information was dominated by the highly-absorbed TeV band. This paper highlights how multiwavelength spectra including X-ray band and Fermi data can be used to probe diffusive acceleration in relativistic, oblique, MHD shocks in blazar jets. The spectral index of the non-thermal particle distributions resulting from Monte Carlo simulations of DSA, and the fraction of thermal particles accelerated to non-thermal energies, depend sensitively on the particles' mean free path scale, and also on the magnetic field obliquity to the shock normal. We investigate self-consistently the radiative synchrotron/Compton signatures of the resulting thermal and non-thermal particle distributions. Important constraints on the frequency of particle scattering and the level of field turbulence are identified for the blazar AO 0235+164. The possible interpretation that turbulence levels decline with remoteness from jet shocks, and a significant role for non-gyroresonant diffusion, are discussed.


2014 ◽  
Vol 10 (S313) ◽  
pp. 153-158
Author(s):  
Markus Böttcher ◽  
Matthew G. Baring ◽  
Edison P. Liang ◽  
Errol J. Summerlin ◽  
Wen Fu ◽  
...  

AbstractThe high-energy emission from blazars and other relativistic jet sources indicates that electrons are accelerated to ultra-relativistic (GeV - TeV) energies in these systems. This paper summarizes recent results from numerical studies of two fundamentally different particle acceleration mechanisms potentially at work in relativistic jets: Magnetic-field generation and relativistic particle acceleration in relativistic shear layers, which are likely to be present in relativistic jets, is studied via Particle-in-Cell (PIC) simulations. Diffusive shock acceleration at relativistic shocks is investigated using Monte-Carlo simulations. The resulting magnetic-field configurations and thermal + non-thermal particle distributions are then used to predict multi-wavelength radiative (synchrotron + Compton) signatures of both acceleration scenarios. In particular, we address how anisotropic shear-layer acceleration may be able to circumvent the well-known Lorentz-factor crisis, and how the self-consistent evaluation of thermal + non-thermal particle populations in diffusive shock acceleration simulations provides tests of the bulk Comptonization model for the Big Blue Bump observed in the SEDs of several blazars.


Author(s):  
J. A. Kropotina ◽  
A. M. Bykov ◽  
V. E. Ermolina ◽  
S. M. Osipov ◽  
V. I. Romansky

Diffusive shock acceleration (DSA) is a very efficient mechanism of high energy particle acceleration in heliosphere, supernova remnants, stellar winds and gamma-ray bursts. We present microscopic simulation of particle injection and diffusive shock acceleration which is performed with 3D divergence-conserving second-order accurate hybrid code "Maximus". Hydrogen plasma with admixture of various heavy ions is considered. The injection process is found to start through shock reflection for both hydrogen and heavier ions. However, the reflection process depends on charge-to-mass ratio. While hydrogen ions reflection appears at shock ramp and is governed by the cross-shock potential, the reflection of ions with greater A=Z proceeds deeper down-stream via gyration in perpendicular magnetic field component. The heavy ions appear to inject into the DSA preferentially, but this chemical enhancement saturates with growing A=Z. The protons injection efficiency is estimated within various approaches, and it is shown that about 20% of initial flow energy goes into accelerated particles.


1994 ◽  
Vol 142 ◽  
pp. 877-881
Author(s):  
David Eichler

AbstractMany proficient gamma-ray sources show energy spectra that are consistent with E−2 primary spectra. Such sources include recently identified gamma-ray quasars and some gamma-ray bursts. Assuming thick target conversion, this is consistent with shock acceleration, and the dominance of the gamma rays of the luminosity is also consistent with previous predictions of high production efficiency of fresh cosmic rays in shocks. The spectral cutoffs in the gamma rays may offer clues as to whether the high-energy particles are electrons or protons. Resolution of this matter might have implications for the nature of the sources and for theory of shock accelerated electrons.Subject headings: acceleration of particles — gamma rays: bursts — shock waves


2017 ◽  
Vol 13 (S335) ◽  
pp. 43-48 ◽  
Author(s):  
Alexei Struminsky

AbstractAt present two concurrent paradigms of solar energetic particle (SEP) origin exist: acceleration directly in the flare site or by the shock wave of coronal mass ejection (CME). Active discussions on a relative role of flares and coronal mass ejections for SEP acceleration and propagation are continuous until now. In my opinion only future observations of solar high energy γ–emission with better spectral, spatial and temporal resolution may clarify this issue. In my report I discuss possible signatures of the flare and shock acceleration processes. What is a picture provided by the current instruments? What can we expect to observe with a perfect instrument in high energy gamma rays in one or another case on a time scale of impulsive and long decay flare phases?


2019 ◽  
Vol 622 ◽  
pp. A20 ◽  
Author(s):  
D. N. Hoang ◽  
T. W. Shimwell ◽  
R. J. van Weeren ◽  
G. Brunetti ◽  
H. J. A. Röttgering ◽  
...  

Context. Extended synchrotron radio sources are often observed in merging galaxy clusters. Studies of the extended emission help us to understand the mechanisms in which the radio emitting particles gain their relativistic energies. Aims. We examine the possible acceleration mechanisms of the relativistic particles that are responsible for the extended radio emission in the merging galaxy cluster Abell 520. Methods. We performed new 145 MHz observations with the LOw Frequency ARay (LOFAR) and combined these with archival Giant Metrewave Radio Telescope (GMRT) 323 MHz and Very Large Array (VLA) 1.5 GHz data to study the morphological and spectral properties of extended cluster emission. The observational properties are discussed in the framework of particle acceleration models associated with cluster merger turbulence and shocks. Results. In Abell 520, we confirm the presence of extended (760 × 950 kpc2) synchrotron radio emission that has been classified as a radio halo. The comparison between the radio and X-ray brightness suggests that the halo might originate in a cocoon rather than from the central X-ray bright regions of the cluster. The halo spectrum is roughly uniform on the scale of 66 kpc. There is a hint of spectral steepening from the SW edge towards the cluster centre. Assuming diffusive shock acceleration (DSA), the radio data are suggestive of a shock Mach number of ℳSW = 2.6−0.2+0.3 that is consistent with the X-ray derived estimates. This is in agreement with the scenario in which relativistic electrons in the SW radio edge gain their energies at the shock front via acceleration of either thermal or fossil electrons. We do not detect extended radio emission ahead of the SW shock that is predicted if the emission is the result of adiabatic compression. An X-ray surface brightness discontinuity is detected towards the NE region that may be a counter shock of Mach number ℳNEX = 1.52±0.05. This is lower than the value predicted from the radio emission which, assuming DSA, is consistent with ℳNE = 2.1 ± 0.2. Conclusions. Our observations indicate that the radio emission in the SW of Abell 520 is likely effected by the prominent X-ray detected shock in which radio emitting particles are (re-)accelerated through the Fermi-I mechanism. The NE X-ray discontinuity that is approximately collocated with an edge in the radio emission hints at the presence of a counter shock.


Author(s):  
Markus Boettcher

Relativistic shocks are one of the most plausible sites of the emission of strongly variable, polarized multi-wavelength emission from relativistic jet sources such as blazars, via diffusive shock acceleration (DSA) of relativistic particles. This paper summarizes recent results on a self-consistent coupling of diffusive shock acceleration and radiation transfer in blazar jets. We demonstrate that the observed spectral energy distributions (SEDs) of blazars strongly constrain the nature of hydromagnetic turbulence responsible for pitch-angle scattering by requiring a strongly energy-dependent pitch-angle mean free path. The prominent soft X-ray excess (``Big Blue Bump'') in the SED of the BL Lac object AO 0235+164 can be modelled as the signature of bulk Compton scattering of external radiation fields by the thermal electron population, which places additional constraints on the level of hydromagnetic turbulence. It has further been demonstrated that internal shocks propagating in a jet pervaded by a helical magnetic field naturally produce polarization-angle swings by 180$^o$, in tandem with multi-wavelength flaring activity, without requiring any helical motion paths or other asymmetric jet structures. The specific application of this model to 3C279 presents the first consistent, simultaneous modeling of snap-shot SEDs, multi-wavelength light curves and time-dependent polarization signatures of a blazar during a polarization-angle (PA) rotation. This model has recently been generalized to a lepto-hadronic model, in which the high-energy emission is dominated by proton synchrotron radiation. It is shown that in this case, the high-energy (X-ray and $\gamma$-ray) polarization signatures are expected to be significantly more stable (not showing PA rotations) than the low-energy (electron-synchrotron) signatures.


2020 ◽  
Vol 494 (3) ◽  
pp. 3166-3176 ◽  
Author(s):  
T Vieu ◽  
S Gabici ◽  
V Tatischeff

ABSTRACT We model the diffusive shock acceleration of particles in a system of two colliding shock waves and present a method to solve the time-dependent problem analytically in the test-particle approximation and high energy limit. In particular, we show that in this limit the problem can be analysed with the help of a self-similar solution. While a number of recent works predict hard (E−1) spectra for the accelerated particles in the stationary limit, or the appearance of spectral breaks, we found instead that the spectrum of accelerated particles in a time-dependent collision follows quite closely the canonical E−2 prediction of diffusive shock acceleration at a single shock, except at the highest energy, where a hardening appears, originating a bumpy feature just before the exponential cut-off. We also investigated the effect of the reacceleration of pre-existing cosmic rays by a system of two shocks, and found that under certain conditions spectral features can appear in the cut-off region. Finally, the mathematical methods presented here are very general and could be easily applied to a variety of astrophysical situations, including for instance standing shocks in accretion flows, diverging shocks, backward collisions of a slow shock by a faster shock, and wind–wind or shock–wind collisions.


Sign in / Sign up

Export Citation Format

Share Document