scholarly journals Chemical Profile, Antioxidant, Anti-Proliferative, Anticoagulant and Mutagenic Effects of a Hydroalcoholic Extract of Tuscan Rosmarinus officinalis

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 97
Author(s):  
Stefania Lamponi ◽  
Maria Camilla Baratto ◽  
Elisabetta Miraldi ◽  
Giulia Baini ◽  
Marco Biagi

This study aimed to characterize the chemical profile of an ethanolic extract of Tuscan Rosmarinus officinalis (Roex) and to determine its in vitro bioactivity. The content of phenolic and flavonoid compounds, hydroxycinnamic acids and triterpenoids was determined, and high-performance liquid chromatography-diode array detection (HPLC-DAD) analysis revealed that rosmarinic acid and other hydroxycinnamic derivatives were the main constituents of the extract. Roex demonstrated to have both antioxidant activity and the capability to scavenge hydrogen peroxide in a concentration dependent manner. Moreover, NIH3T3 mouse fibroblasts and human breast adenocarcinoma cells MDA-MB-231 viability was influenced by the extract with an IC50 of 2.4 × 10−1 mg/mL and 4.8 × 10−1 mg/mL, respectively. The addition of Roex to the culture medium of both the above cell lines, resulted also in the reduction of cell death after H2O2 pre-treatment. The Ames test demonstrated that Roex was not genotoxic towards both TA98 and TA100 strains, with and without S9 metabolic activation. The extract, by inactivating thrombin, showed to also have an anti-coagulating effect at low concentration values. All these biological activities exerted by Roex are tightly correlated to its phytochemical profile, rich in bioactive compounds.

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hend M. Tag ◽  
Amna A. Saddiq ◽  
Monagi Alkinani ◽  
Nashwa Hagagy

AbstractHaloferax sp strain NRS1 (MT967913) was isolated from a solar saltern on the southern coast of the Red Sea, Jeddah, Saudi Arabia. The present study was designed for estimate the potential capacity of the Haloferax sp strain NRS1 to synthesize (silver nanoparticles) AgNPs. Biological activities such as thrombolysis and cytotoxicity of biosynthesized AgNPs were evaluated. The characterization of silver nanoparticles biosynthesized by Haloferax sp (Hfx-AgNPs) was analyzed using UV–vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The dark brown color of the Hfx-AgNPs colloidal showed maximum absorbance at 458 nm. TEM image analysis revealed that the shape of the Hfx-AgNPs was spherical and a size range was 5.77- 73.14 nm. The XRD spectra showed a crystallographic plane of silver nanoparticles, with a crystalline size of 29.28 nm. The prominent FTIR peaks obtained at 3281, 1644 and 1250 cm− 1 identified the Functional groups involved in the reduction of silver ion reduction to AgNPs. Zeta potential results revealed a negative surface charge and stability of Hfx-AgNPs. Colloidal solution of Hfx-AgNPs with concentrations ranging from 3.125 to 100 μg/mL was used to determine its hemolytic activity. Less than 12.5 μg/mL of tested agent showed no hemolysis with high significant decrease compared with positive control, which confirms that Hfx-AgNPs are considered non-hemolytic (non-toxic) agents according to the ISO/TR 7405-1984(f) protocol. Thrombolysis activity of Hfx-AgNPs was observed in a concentration-dependent manner. Further, Hfx-AgNPs may be considered a promising lead compound for the pharmacological industry.


2021 ◽  
Vol 10 (4) ◽  
pp. 408-414
Author(s):  
Oluwaseun Ruth Olasehinde ◽  
Olakunle Bamikole Afolabi ◽  
Benjamin Olusola Omiyale ◽  
Oyindamola Adeniyi Olaoye

Introduction: Diabetes mellitus (DM) has been recognized as the seventh leading cause of global mortality; however, researchers seek alternative means to manage the menace. The current study sought to investigate antioxidant potentials, α-amylase, and α-glucosidase inhibitory activities of ethanolic extract of Moringa oleifera flower in vitro. Methods: Antioxidant properties of the extract were appraised by assessing its inhibition against 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH•), and hydrogen peroxide (H2O2) free radicals, as well as ferric reducing antioxidant power (FRAP), the antidiabetic activity was evaluated by α-amylase and α-glucosidase inhibition.Results: In this study, ethanolic extract of M. oleifera flower demonstrated a significant (P < 0.05) inhibition against DPPH free radical (43.57–83.56%) in a concentration-dependent manner, while FRAP (101.76 ± 1.63 mg/100 g), OH• scavenging ability (71.62 ± 0.95 mg/100 g), and H2O2 free radical scavenging capacity (15.33 ± 1.20 mg/100 g) were also observed. In the same manner, ethanolic extract of M. oleifera flower revealed a significant (P < 0.05) inhibition against α-amylase (IC50= 37.63 mg/mL) and α-glucosidase activities (IC50= 38.30 mg/mL) in the presence of their respective substrates in a concentration-dependent manner in comparison with acarbose. Conclusion: Ethanoic extract of M. oleifera flower could be useful as an alternative phytotherapy in the management of DM, having shown a strong antioxidative capacity and substantial inhibition against the activities of key enzymes involved in carbohydrate hydrolysis in vitro.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3201
Author(s):  
Simone da Cunha Demenciano ◽  
Magalli Costa Barbosa Lima e Silva ◽  
Caroline Almeida Farias Alexandrino ◽  
Wilson Hino Kato Junior ◽  
Patrícia de Oliveira Figueiredo ◽  
...  

The aim of this study was to evaluate the antiproliferative activity, the antioxidant potential, and the chemical profile obtained from the whole fruit and from leaves of Garcinia gardneriana, a fruit tree from Brazilian Cerrado. To determine in vitro antiproliferative activity, the following neoplastic cell lines were considered, along with an immortalized nontumor cell line. The antioxidant potential was determined, and the evaluation of antiradical air activity was performed. The levels of vitamin C and carotenoids were determined. The chemical profile was analyzed by high-performance liquid chromatography coupled to a diode array detector and a mass spectrometer using electrospray ionization interface. The chloroform fraction of the leaf showed antioxidant activity. The vitamin C content had lower values in fruits and higher in leaves. The content of carotenoids for fruits and leaves was expressive. The ethanolic extract and the hexane and chloroform fractions of fruits were active in all neoplastic lines tested. The leaves showed cytotoxic activity in the hexane fraction in the breast carcinoma line. The analysis of data obtained verified the presence of dimers, monomers, and tetramers of hexoses, polycarboxylic acids, xanthones, flavonoids, biflavonoids, and benzophenones.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1039
Author(s):  
Li-Ping Sun ◽  
Feng-Feng Shi ◽  
Wen-Wen Zhang ◽  
Zhi-Hao Zhang ◽  
Kai Wang

Safflower honey is a unique type of monofloral honey collected from the nectar of Carthamus tinctorius L. in the Apis mellifera colonies of northwestern China. Scant information is available regarding its chemical composition and biological activities. Here, for the first time, we investigated this honey’s chemical composition and evaluated its in vitro antioxidant and anti-inflammatory activities. Basic physicochemical parameters of the safflower honey samples in comparison to established quality standards suggested that safflower honeys presented a good level of quality. The in vitro antioxidant tests showed that extract from Carthamus tinctorius L. honey (ECH) effectively scavenged DPPH and ABTS+ free radicals. In lipopolysaccharides (LPS) activated murine macrophages inflammatory model, ECH treatment to the cells inhibited the release of nitric oxide and down-regulated the expressions of inflammatory-relating genes (iNOS, IL-1β, TNF-α and MCP-1). The expressions of the antioxidant genes TXNRD, HO-1, and NQO-1, were significantly boosted in a concentration-dependent manner. ECH decreased the phosphorylation of IκBα and inhibited the nuclear entry of the NF-κB-p65 protein, in LPS-stimulated Raw 264.7 cells, accompany with the increased expressions of Nrf-2 and HO-1, suggesting that ECH achieved the anti-inflammatory effects by inhibiting NF-κB signal transduction and boosting the antioxidant system via activating Nrf-2/HO-1 signaling. These results, taken together, indicated that safflower honey has great potential into developing as a high-quality agriproduct.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jassem G. Mahdi ◽  
Eamon J. Mahdi ◽  
Amal Al-Hazzaa ◽  
Chris J. Pepper

There has been a growing interest in the beneficial effects of simple phenolic acids and their ability to exhibit various biological activities. The aim of this study was to assess in vitro biological activities of 2-, 3-, and 4-hydroxybenzoate lithium (HBLi) complexes on HT-1080 human fibrosarcoma cells by methods of using a metabolic activity assay, immunochemical and morphological techniques. Results showed that HBLi complexes exert their cytotoxic activities in a concentration- and chemical structure-dependent manner in the following order: 4-HBLi > 3-HBLi > 2-HBLi. Flow cytometry displayed evidence of apoptosis induced by 3-HBLi (21.8%) and 4-HBLi (33.2%). These results were verified by SEM, which revealed the formation of apoptotic bodies. In addition, these 3-HBLi and 4-HBLi caused an increase in HT-1080 cell cycle arrest in G0/G1 phase when compared to the controls (25% and 30.6%, resp.) when cells were treated with 6 mM for 24 hours. Immunochemical studies related to the molecular mechanism of apoptosis indicated that HBLi complexes downregulated the expression of Bcl-2 and upregulated Bax, p53, and caspases-3 in a concentration-dependent manner. HBLi complexes lowered Bcl-2/Bax ratios and induced the expression of p53 and caspase-3. These results suggest that HBLi complexes may exert their apoptotic effects through mitochondrial-mediated, caspase-dependent, apoptotic mechanisms.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Owain Roberts ◽  
Saye Khoo ◽  
Andrew Owen ◽  
Marco Siccardi

ABSTRACT Treatment of HIV-infected patients coinfected with Mycobacterium tuberculosis is challenging due to drug-drug interactions (DDIs) between antiretrovirals (ARVs) and antituberculosis (anti-TB) drugs. The aim of this study was to quantify the effect of cobicistat (COBI) or ritonavir (RTV) in modulating DDIs between darunavir (DRV) and rifampin (RIF) in a human hepatocyte-based in vitro model. Human primary hepatocyte cultures were incubated with RIF alone or in combination with either COBI or RTV for 3 days, followed by coincubation with DRV for 1 h. The resultant DRV concentrations were quantified by high-performance liquid chromatography with UV detection, and the apparent intrinsic clearance (CLint.app.) of DRV was calculated. Both RTV and COBI lowered the RIF-induced increases in CLint.app. in a concentration-dependent manner. Linear regression analysis showed that log10 RTV and log10 COBI concentrations were associated with the percent inhibition of RIF-induced elevations in DRV CLint.app., where β was equal to −234 (95% confidence interval [CI] = −275 to −193; P < 0.0001) and −73 (95% CI = −89 to −57; P < 0.0001), respectively. RTV was more effective in lowering 10 μM RIF-induced elevations in DRV CLint.app. (half-maximal [50%] inhibitory concentration [IC50] = 0.025 μM) than COBI (IC50 = 0.223 μM). Incubation of either RTV or COBI in combination with RIF was sufficient to overcome RIF-induced elevations in DRV CLint.app., with RTV being more potent than COBI. These data provide the first in vitro experimental insight into DDIs between RIF and COBI-boosted or RTV-boosted DRV and will be useful to inform physiologically based pharmacokinetic (PBPK) models to aid in optimizing dosing regimens for the treatment of patients coinfected with HIV and M. tuberculosis.


2021 ◽  
Author(s):  
Masaru Nakayasu ◽  
Kohei Ohno ◽  
Kyoko Takamatsu ◽  
Yuichi Aoki ◽  
Shinichi Yamazaki ◽  
...  

Abstract Saponins are the group of plant specialized metabolites which are widely distributed in angiosperm plants and have various biological activities. The present study focused on α-tomatine, a major saponin present in tissues of tomato (Solanum lycopersicum) plants. α-Tomatine is responsible for defense against plant pathogens and herbivores, but its biological function in the rhizosphere remains unknown. Secretion of tomatine was higher at the early growth than the green-fruit stage in hydroponically grown plants, and the concentration of tomatine in the rhizosphere of field-grown plants was higher than that of the bulk soil at all growth stages. The effects of tomatine and its aglycone tomatidine on the bacterial communities in the soil were evaluated in vitro, revealing that both compounds influenced the microbiome in a concentration-dependent manner. Numerous bacterial families were influenced in tomatine/tomatidine-treated soil as well as in the tomato rhizosphere. Sphingomonadaceae species, which are commonly observed and enriched in tomato rhizospheres in the fields, were also enriched in tomatine- and tomatidine-treated soils. Moreover, a jasmonate-responsive ETHYLENE RESPONSE FACTOR 4 mutant associated with low tomatine production caused the root-associated bacterial communities to change with a reduced abundance of Sphingomonadaceae. Taken together, our results highlight the role of tomatine in shaping the bacterial communities of the rhizosphere and suggest additional functions of tomatine in belowground biological communication.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Pai-Feng Kao ◽  
Shwu-Huey Wang ◽  
Wei-Ting Hung ◽  
Yu-Han Liao ◽  
Chun-Mao Lin ◽  
...  

The major cell wall constituent ofGanoderma lucidum(G. lucidum) isβ-1,3-glucan. This study examined the polysaccharide from the residues of alkaline-extracted fruiting bodies using high-performance anion-exchange chromatography (HPAEC), and it employed nuclear magnetic resonance (NMR) and mass spectrometry (MS) to confirm the structures. We have successfully isolated low-molecular-weightβ-1,3-glucan (LMG), in high yields, from the waste residue of extracted fruiting bodies ofG. lucidum. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay evaluated the capability of LMG to suppress H2O2-induced cell death in RAW264.7 cells, identifying that LMG protected cells from H2O2-induced damage. LMG treatment decreased H2O2-induced intracellular reactive oxygen species (ROS) production. LMG also influenced sphingomyelinase (SMase) activity, stimulated by cell death to induce ceramide formation, and then increase cell ROS production. Estimation of the activities of neutral and acid SMasesin vitroshowed that LMG suppressed the activities of both neutral and acid SMases in a concentration-dependent manner. These results suggest that LMG, a water-solubleβ-1,3-glucan recycled from extracted residue ofG. lucidum, possesses antioxidant capability against H2O2-induced cell death by attenuating intracellular ROS and inhibiting SMase activity.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1664
Author(s):  
Man-Hai Liu ◽  
Yi-Fen Li ◽  
Bing-Huei Chen

Pomelo (Citrus grandis), an important fruit crop grown in tropical and subtropical areas, is cultivated mainly in Asian countries. The dominant pigment in pomelo leaves, chlorophyll, has been reported to possess many biological activities such as antioxidant, anti-inflammation and anticancer. The objectives of this study were to determine chlorophylls in Pomelo leaves by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and to encapsulate the isolated chlorophylls from preparative column chromatography into a nanoemulsion system for elucidating the inhibition mechanism on the growth of melanoma cells A375. The results showed that chlorophyll a and chlorophyll b could be separated within 25 min by using a C18 column and a gradient ternary mobile phase of acetone, acetonitrile and methanol. Pomelo leaves mainly contained chlorophyll a (2278.3 μg/g) and chlorophyll b (785.8 μg/g). A highly stable chlorophyll nanoemulsion was prepared with the mean particle size being 13.2 nm as determined by a dynamic light scattering (DLS) method. The encapsulation efficiency of chlorophyll nanoemulsion was 99%, while the zeta potential was −64.4 mV. In addition, the chlorophyll nanoemulsion possessed high thermal stability up to 100 °C and remained stable over a 90-day storage period at 4 °C. Western blot analysis revealed that chlorophyll nanoemulsion and extract could upregulate p53, p21, cyclin B and cyclin A as well as downregulate CDK1 and CDK2 in a concentration-dependent manner for inhibition of melanoma cells A375. Furthermore, chlorophyll nanoemulsion and extract could upregulate Bax and cytochrome C and downregulate Bcl-2, leading to activation of caspase-9, caspase-8 and caspase-3 for the induction of cell apoptosis. Compared to chlorophyll extract, chlorophyll nanoemulsion was more effective in inhibiting the growth of melanoma cells A375.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Suaib Luqman ◽  
Suchita Srivastava ◽  
Ritesh Kumar ◽  
Anil Kumar Maurya ◽  
Debabrata Chanda

We have investigated effect ofMoringa oleiferaleaf and fruit extracts on markers of oxidative stress, its toxicity evaluation, and correlation with antioxidant properties usingin vitroandin vitroassays. The aqueous extract of leaf was able to increase the GSH and reduce MDA level in a concentration-dependent manner. The ethanolic extract of fruit showed highest phenolic content, strong reducing power and free radical scavenging capacity. The antioxidant capacity of ethanolic extract of both fruit and leaf was higher in thein vitroassay compared to aqueous extract which showed higher potentialin vivo. Safety evaluation studies showed no toxicity of the extracts up to a dose of 100 mg/kg body weight. Our results support the potent antioxidant activity of aqueous and ethanolic extract ofMoringa oleiferawhich adds one more positive attribute to its known pharmacological importance.


Sign in / Sign up

Export Citation Format

Share Document