scholarly journals Preparation of Chlorophyll Nanoemulsion from Pomelo Leaves and Its Inhibition Effect on Melanoma Cells A375

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1664
Author(s):  
Man-Hai Liu ◽  
Yi-Fen Li ◽  
Bing-Huei Chen

Pomelo (Citrus grandis), an important fruit crop grown in tropical and subtropical areas, is cultivated mainly in Asian countries. The dominant pigment in pomelo leaves, chlorophyll, has been reported to possess many biological activities such as antioxidant, anti-inflammation and anticancer. The objectives of this study were to determine chlorophylls in Pomelo leaves by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and to encapsulate the isolated chlorophylls from preparative column chromatography into a nanoemulsion system for elucidating the inhibition mechanism on the growth of melanoma cells A375. The results showed that chlorophyll a and chlorophyll b could be separated within 25 min by using a C18 column and a gradient ternary mobile phase of acetone, acetonitrile and methanol. Pomelo leaves mainly contained chlorophyll a (2278.3 μg/g) and chlorophyll b (785.8 μg/g). A highly stable chlorophyll nanoemulsion was prepared with the mean particle size being 13.2 nm as determined by a dynamic light scattering (DLS) method. The encapsulation efficiency of chlorophyll nanoemulsion was 99%, while the zeta potential was −64.4 mV. In addition, the chlorophyll nanoemulsion possessed high thermal stability up to 100 °C and remained stable over a 90-day storage period at 4 °C. Western blot analysis revealed that chlorophyll nanoemulsion and extract could upregulate p53, p21, cyclin B and cyclin A as well as downregulate CDK1 and CDK2 in a concentration-dependent manner for inhibition of melanoma cells A375. Furthermore, chlorophyll nanoemulsion and extract could upregulate Bax and cytochrome C and downregulate Bcl-2, leading to activation of caspase-9, caspase-8 and caspase-3 for the induction of cell apoptosis. Compared to chlorophyll extract, chlorophyll nanoemulsion was more effective in inhibiting the growth of melanoma cells A375.

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2129
Author(s):  
Man-Hai Liu ◽  
Yi-Fen Li ◽  
Bing-Huei Chen

This study aims to determine carotenoids in pomelo leaves (Citrus grandis Osbeck), a rich source of nutrients and phytochemicals, by high-performance liquid chromatography-mass spectrometry and prepare carotenoid nanoemulsions for the study of its inhibitory mechanism on melanoma cells A375. Fourteen carotenoids were separated within 27 min by using a YMC-C30 column and a gradient mobile phase of methanol-acetonitrile-water (84:14:2, v/v/v) and methylene chloride with a flow rate of 1 mL/min and detection wavelength of 450 nm. All-trans-lutein plus its cis-isomers were present in the largest amount (3012.97 μg/g), followed by all-trans-neoxanthin (309.2 μg/g), all-trans-violaxanthin (208.5 μg/g), all-trans-β-carotene plus its cis-isomers (203.17 μg/g), all-trans-α-carotene plus its cis-isomers (152.5 μg/g), all-trans-zeaxanthin (54.67 μg/g), and all-trans-β-cryptoxanthin plus its cis-isomers (24.56 μg/g). A stable carotenoid nanoemulsion was prepared with a mean particle size of 13.3 nm, zeta-potential of −66.6 mV, a polydispersity index of 0.132 and an encapsulation efficiency of 99%. Both the carotenoid extract and nanoemulsion could upregulate p53, p21, cyclin B and cyclin A expressions in melanoma A375 cells and downregulate CDK1 and CDK2 in a concentration-dependent manner. Also, they could upregulate Bax and cytochrome-C and downregulate Bcl-2, leading to cell apoptosis through activation of caspase-9, caspase-8 and caspase-3. Compared to extract, carotenoid nanoemulsion was shown to be more effective in inhibiting the growth of melanoma cells A375. This finding further demonstrated that a carotenoid nanoemulsion prepared from pomelo leaves possessed a great potential to be developed into functional foods or even botanic drugs.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 97
Author(s):  
Stefania Lamponi ◽  
Maria Camilla Baratto ◽  
Elisabetta Miraldi ◽  
Giulia Baini ◽  
Marco Biagi

This study aimed to characterize the chemical profile of an ethanolic extract of Tuscan Rosmarinus officinalis (Roex) and to determine its in vitro bioactivity. The content of phenolic and flavonoid compounds, hydroxycinnamic acids and triterpenoids was determined, and high-performance liquid chromatography-diode array detection (HPLC-DAD) analysis revealed that rosmarinic acid and other hydroxycinnamic derivatives were the main constituents of the extract. Roex demonstrated to have both antioxidant activity and the capability to scavenge hydrogen peroxide in a concentration dependent manner. Moreover, NIH3T3 mouse fibroblasts and human breast adenocarcinoma cells MDA-MB-231 viability was influenced by the extract with an IC50 of 2.4 × 10−1 mg/mL and 4.8 × 10−1 mg/mL, respectively. The addition of Roex to the culture medium of both the above cell lines, resulted also in the reduction of cell death after H2O2 pre-treatment. The Ames test demonstrated that Roex was not genotoxic towards both TA98 and TA100 strains, with and without S9 metabolic activation. The extract, by inactivating thrombin, showed to also have an anti-coagulating effect at low concentration values. All these biological activities exerted by Roex are tightly correlated to its phytochemical profile, rich in bioactive compounds.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1545
Author(s):  
Hwa-Young Song ◽  
Da-Eun Jeong ◽  
Mina Lee

The aim of this study was to identify the optimal extraction conditions for leaves of Osmanthus fragrans var. aurantiacus. Inhibitory effects of various extracts on NO production were compared. Antioxidant evaluations for total phenol and flavonoid contents were carried out using various extracts of O. fragrans var. aurantiacus leaves obtained under optimal extraction conditions that showed the greatest effect on NO production. The optimal method for extracting O. fragrans var. aurantiacus leaves resulted in an extract named OP OFLE. OP OFLE showed DPPH and ABTS radical scavenging activities in a concentration-dependent manner. Phillyrin (PH) was isolated as a major compound from OP OFLE by HPLC/DAD analysis. OP OFLE and PH reduced inducible nitric oxide (iNOS) and cyclooxygenase (COX)-2 protein expression and downregulated proinflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α in LPS-stimulated RAW 264.7 and HT-29 cells. To determine the signal pathway involved in the inhibition of NO production, a Western blot analysis was performed. Results showed that OP OFLE decreased phosphorylation of extracellular regulated kinase (pERK) 1/2 and the expression of nuclear factor-kappa B (NF-κB). Our results suggest that extracts of O. fragrans var. aurantiacus leaves and its major components have biological activities such as antioxidative and anti-inflammatory properties.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hend M. Tag ◽  
Amna A. Saddiq ◽  
Monagi Alkinani ◽  
Nashwa Hagagy

AbstractHaloferax sp strain NRS1 (MT967913) was isolated from a solar saltern on the southern coast of the Red Sea, Jeddah, Saudi Arabia. The present study was designed for estimate the potential capacity of the Haloferax sp strain NRS1 to synthesize (silver nanoparticles) AgNPs. Biological activities such as thrombolysis and cytotoxicity of biosynthesized AgNPs were evaluated. The characterization of silver nanoparticles biosynthesized by Haloferax sp (Hfx-AgNPs) was analyzed using UV–vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The dark brown color of the Hfx-AgNPs colloidal showed maximum absorbance at 458 nm. TEM image analysis revealed that the shape of the Hfx-AgNPs was spherical and a size range was 5.77- 73.14 nm. The XRD spectra showed a crystallographic plane of silver nanoparticles, with a crystalline size of 29.28 nm. The prominent FTIR peaks obtained at 3281, 1644 and 1250 cm− 1 identified the Functional groups involved in the reduction of silver ion reduction to AgNPs. Zeta potential results revealed a negative surface charge and stability of Hfx-AgNPs. Colloidal solution of Hfx-AgNPs with concentrations ranging from 3.125 to 100 μg/mL was used to determine its hemolytic activity. Less than 12.5 μg/mL of tested agent showed no hemolysis with high significant decrease compared with positive control, which confirms that Hfx-AgNPs are considered non-hemolytic (non-toxic) agents according to the ISO/TR 7405-1984(f) protocol. Thrombolysis activity of Hfx-AgNPs was observed in a concentration-dependent manner. Further, Hfx-AgNPs may be considered a promising lead compound for the pharmacological industry.


2021 ◽  
Vol 16 (9) ◽  
pp. 1934578X2110331
Author(s):  
Hua-Sheng Zhang ◽  
Yong-Ming Yan ◽  
Dai-Wei Wang ◽  
Qing Lv ◽  
Yong-Xian Cheng ◽  
...  

Two new glycosides, periplanosides A (1) and B (2), 3 compounds reported from a natural source for the first time (3 − 5), and 6 known compounds 6 − 11 were isolated from the ethanol extract of Periplaneta americana (Linnaeus). Their structures, including absolute configurations, were unambiguously identified by comprehensive spectroscopic and chemical methods. Compound 3 is a racemate whose enantiomers were purified by chiral high-performance liquid chromatography . The biological evaluation results showed that compound 7 (0 − 20 μM) did not affect the viability of RAW264.7 cells and could effectively inhibit the production of interleukin-6 stimulated by lipopolysaccharide in a concentration-dependent manner, indicating the potential to develop novel agents against inflammation-related diseases.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1039
Author(s):  
Li-Ping Sun ◽  
Feng-Feng Shi ◽  
Wen-Wen Zhang ◽  
Zhi-Hao Zhang ◽  
Kai Wang

Safflower honey is a unique type of monofloral honey collected from the nectar of Carthamus tinctorius L. in the Apis mellifera colonies of northwestern China. Scant information is available regarding its chemical composition and biological activities. Here, for the first time, we investigated this honey’s chemical composition and evaluated its in vitro antioxidant and anti-inflammatory activities. Basic physicochemical parameters of the safflower honey samples in comparison to established quality standards suggested that safflower honeys presented a good level of quality. The in vitro antioxidant tests showed that extract from Carthamus tinctorius L. honey (ECH) effectively scavenged DPPH and ABTS+ free radicals. In lipopolysaccharides (LPS) activated murine macrophages inflammatory model, ECH treatment to the cells inhibited the release of nitric oxide and down-regulated the expressions of inflammatory-relating genes (iNOS, IL-1β, TNF-α and MCP-1). The expressions of the antioxidant genes TXNRD, HO-1, and NQO-1, were significantly boosted in a concentration-dependent manner. ECH decreased the phosphorylation of IκBα and inhibited the nuclear entry of the NF-κB-p65 protein, in LPS-stimulated Raw 264.7 cells, accompany with the increased expressions of Nrf-2 and HO-1, suggesting that ECH achieved the anti-inflammatory effects by inhibiting NF-κB signal transduction and boosting the antioxidant system via activating Nrf-2/HO-1 signaling. These results, taken together, indicated that safflower honey has great potential into developing as a high-quality agriproduct.


2014 ◽  
Vol 9 (6) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Rui Jiang ◽  
Liwei Sun ◽  
Yanbing Wang ◽  
Jianzeng Liu ◽  
Xiaodan Liu ◽  
...  

Panax ginseng C.A.Meyer is one of the most valuable traditional Chinese medicines. In this study, the essential oil of ginseng leaves (EOGL), collected using hydrodistillation and analyzed by GC/MS, contained a complex mixture of aliphatic (69.0%), terpenoid (21.5%) and aromatic compounds (2.4%). Among 54 components identified, the major ones were palmitic acid (36.1%), β-farnesene (15.4%), linoleic acid (9.8%) and phytol (5.6%). In the cytotoxicity study, EOGL exhibited obvious cytotoxic activities against different cancer cell lines, including Hela, A549, ZR-75-1, HT-29, SGC7901 and B16 cells. Furthermore, Annexin V-FITC/PI staining assay indicated that EOGL can induce late apoptosis of ZR-75-1 cells, and the percentage of apoptotic cells increased in a concentration-dependent manner (0.9% to 5.6% and 67.4%). In addition to this, we also found that EOGL exhibited weak DPPH radical scavenging (12.0 ± 0.4 mg/mL) and ABTS radical scavenging activities (1.6 ± 0.1 mg/mL), and showed antibacterial activity against the Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis, and the Gram-negative bacterium, Escherichia coli. The data suggest that EOGL, which possesses important biological activities, especially significant anticancer activity, could be a potential medicinal resource.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 842 ◽  
Author(s):  
Sylwia Zielińska ◽  
Monika Ewa Czerwińska ◽  
Magdalena Dziągwa-Becker ◽  
Andrzej Dryś ◽  
Mariusz Kucharski ◽  
...  

Due to certain differences in terms of molecular structure, isoquinoline alkaloids from Chelidonium majus engage in various biological activities. Apart from their well-documented antimicrobial potential, some phenanthridine and protoberberine derivatives as well as C. majus extract present with anti-inflammatory and cytotoxic effects. In this study, the LC–MS/MS method was used to determine alkaloids, phenolic acids, carboxylic acids, and hydroxybenzoic acids. We investigated five individually tested alkaloids (coptisine, berberine, chelidonine, chelerythrine, and sanguinarine) as well as C. majus root extract for their effect on the secretion of IL-1β, IL-8, and TNF-α in human polymorphonuclear leukocytes (neutrophils). Berberine, chelidonine, and chelerythrine significantly decreased the secretion of TNF-α in a concentration-dependent manner. Sanguinarine was found to be the most potent inhibitor of IL-1β secretion. However, the overproduction of IL-8 and TNF-α and a high cytotoxicity for these compounds were observed. Coptisine was highly cytotoxic and slightly decreased the secretion of the studied cytokines. The extract (1.25–12.5 μg/mL) increased cytokine secretion in a concentration-dependent manner, but an increase in cytotoxicity was also noted. The alkaloids were active at very low concentrations (0.625–2.5 μM), but their potential cytotoxic effects, except for chelidonine and chelerythrine, should not be ignored.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jassem G. Mahdi ◽  
Eamon J. Mahdi ◽  
Amal Al-Hazzaa ◽  
Chris J. Pepper

There has been a growing interest in the beneficial effects of simple phenolic acids and their ability to exhibit various biological activities. The aim of this study was to assess in vitro biological activities of 2-, 3-, and 4-hydroxybenzoate lithium (HBLi) complexes on HT-1080 human fibrosarcoma cells by methods of using a metabolic activity assay, immunochemical and morphological techniques. Results showed that HBLi complexes exert their cytotoxic activities in a concentration- and chemical structure-dependent manner in the following order: 4-HBLi > 3-HBLi > 2-HBLi. Flow cytometry displayed evidence of apoptosis induced by 3-HBLi (21.8%) and 4-HBLi (33.2%). These results were verified by SEM, which revealed the formation of apoptotic bodies. In addition, these 3-HBLi and 4-HBLi caused an increase in HT-1080 cell cycle arrest in G0/G1 phase when compared to the controls (25% and 30.6%, resp.) when cells were treated with 6 mM for 24 hours. Immunochemical studies related to the molecular mechanism of apoptosis indicated that HBLi complexes downregulated the expression of Bcl-2 and upregulated Bax, p53, and caspases-3 in a concentration-dependent manner. HBLi complexes lowered Bcl-2/Bax ratios and induced the expression of p53 and caspase-3. These results suggest that HBLi complexes may exert their apoptotic effects through mitochondrial-mediated, caspase-dependent, apoptotic mechanisms.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Owain Roberts ◽  
Saye Khoo ◽  
Andrew Owen ◽  
Marco Siccardi

ABSTRACT Treatment of HIV-infected patients coinfected with Mycobacterium tuberculosis is challenging due to drug-drug interactions (DDIs) between antiretrovirals (ARVs) and antituberculosis (anti-TB) drugs. The aim of this study was to quantify the effect of cobicistat (COBI) or ritonavir (RTV) in modulating DDIs between darunavir (DRV) and rifampin (RIF) in a human hepatocyte-based in vitro model. Human primary hepatocyte cultures were incubated with RIF alone or in combination with either COBI or RTV for 3 days, followed by coincubation with DRV for 1 h. The resultant DRV concentrations were quantified by high-performance liquid chromatography with UV detection, and the apparent intrinsic clearance (CLint.app.) of DRV was calculated. Both RTV and COBI lowered the RIF-induced increases in CLint.app. in a concentration-dependent manner. Linear regression analysis showed that log10 RTV and log10 COBI concentrations were associated with the percent inhibition of RIF-induced elevations in DRV CLint.app., where β was equal to −234 (95% confidence interval [CI] = −275 to −193; P < 0.0001) and −73 (95% CI = −89 to −57; P < 0.0001), respectively. RTV was more effective in lowering 10 μM RIF-induced elevations in DRV CLint.app. (half-maximal [50%] inhibitory concentration [IC50] = 0.025 μM) than COBI (IC50 = 0.223 μM). Incubation of either RTV or COBI in combination with RIF was sufficient to overcome RIF-induced elevations in DRV CLint.app., with RTV being more potent than COBI. These data provide the first in vitro experimental insight into DDIs between RIF and COBI-boosted or RTV-boosted DRV and will be useful to inform physiologically based pharmacokinetic (PBPK) models to aid in optimizing dosing regimens for the treatment of patients coinfected with HIV and M. tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document