scholarly journals The Different Faces of Arabidopsis arenosa—A Plant Species for a Special Purpose

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1342
Author(s):  
Żaneta Gieroń ◽  
Krzysztof Sitko ◽  
Eugeniusz Małkowski

The following review article collects information on the plant species Arabidopsis arenosa. Thus far, A. arenosa has been known as a model species for autotetraploidy studies because, apart from diploid individuals, there are also tetraploid populations, which is a unique feature of this Arabidopsis species. In addition, A arenosa has often been reported in heavy metal-contaminated sites, where it occurs together with a closely related species A. halleri, a model plant hyperaccumulator of Cd and Zn. Recent studies have shown that several populations of A. arenosa also exhibit Cd and Zn hyperaccumulation. However, it is assumed that the mechanism of hyperaccumulation differs between these two Arabidopsis species. Nevertheless, this phenomenon is still not fully understood, and thorough research is needed. In this paper, we summarize the current state of knowledge regarding research on A. arenosa.

2014 ◽  
Vol 1073-1076 ◽  
pp. 274-277
Author(s):  
Xiao Ling Zhang

The hytoremediation is a promising, environmentally friendly alternative to conventional cleanup techniques for heavy metal contaminated sites. This study is intended to explore the physiological functions of nitric oxide (NO) in the signaling pathways as well as defense responses in Sedum Alfredii Hance, a new zinc (Zn) promising hyperaccumulating plant species for the phytoremediation exposured to Cd contaminations.


2021 ◽  
Vol 14 (13) ◽  
Author(s):  
Fatemeh Mohebzadeh ◽  
Babak Motesharezadeh ◽  
Mohammad Jafari ◽  
Salman Zare ◽  
Maryam Saffari Aman

2009 ◽  
Vol 163 (1-4) ◽  
pp. 477-488 ◽  
Author(s):  
Grażyna A. Płaza ◽  
Grzegorz Nałęcz-Jawecki ◽  
Onruthai Pinyakong ◽  
Paul Illmer ◽  
Rosa Margesin

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Fusheng Zha ◽  
Dongdong Pan ◽  
Long Xu ◽  
Bo Kang ◽  
Chengbin Yang ◽  
...  

Solidification/stabilization (S/S) has been considered as one of the most effective techniques for remediation of the heavy metal-contaminated sites. Among various binders adopted in S/S, alkaline residue (AR) could be considered as a new binder to treat heavy metal-contaminated soil due to its strong adsorptive capacity for heavy metal ions. So in this paper, the strength, leaching, and microstructure characteristics of the solidified/stabilized Pb-contaminated soil by using alkaline residue are systematically investigated. Test results present that the unconfined compressive strength (UCS) of the treated soil will increase, while the leached Pb2+ concentration will decrease, with the increase of the alkaline residue content in the specimen. The UCS increases significantly with the curing time increasing during the initial 28 days, after which the UCS of the specimen becomes stable. The leached Pb2+ concentration decreases significantly at the initial 28 days followed by a stable trend with curing time increasing. The UCS decreases and the leached Pb2+ concentration increases with the increase of the initial Pb2+ concentration in the specimen. The microstructural analysis performed by scanning electron microscope (SEM) showed that the increase of the alkaline residue content and curing time will result in more hydration products and densified microstructure, which could effectively improve the engineering properties of the specimen.


2014 ◽  
pp. S9-S18 ◽  
Author(s):  
D. SEDMERA ◽  
R. G. GOURDIE

Purkinje fibers were the first discovered component of the cardiac conduction system. Originally described in sheep in 1839 as pale subendocardial cells, they were found to be present, although with different morphology, in all mammalian and avian hearts. Here we review differences in their appearance and extent in different species, summarize the current state of knowledge of their function, and provide an update on markers for these cells. Special emphasis is given to popular model species and human anatomy.


2019 ◽  
Vol 37 ◽  
Author(s):  
M.J. KHAN ◽  
N. AHMED ◽  
W. HASSAN ◽  
T. SABA ◽  
S. KHAN ◽  
...  

ABSTRACT: Phytoremediation is a useful tool to restore heavy metals contaminated soils. This study was carried out to test two castor (Ricinus communis) cultivars [Local and DS-30] for phytoextraction of heavy metals from the soil spiked by known concentrations of seven metals (Cu, Cr, Fe, Mn, Ni, Pb and Zn). A pot experiment was laid out by using a completely randomized design. Soil and plant samples were analyzed at 100 days after planting. The data on heavy metal uptake by plant tissues (roots, leaves and shoots) of the two castor cultivars suggested that a considerable amount of metals (Fe = 27.18 mg L-1; Cu = 5.06 mg L-1; Cr = 2.95 mg L-1; Mn = 0.22 mg L-1; Ni = 4.66 mg L-1; Pb = 3.33 mg L-1; Zn = 15.04 mg L-1) was accumulated in the plant biomass. The soil heavy metal content at the end of experiment significantly decreased with both cultivars, resulting in improved soil quality. Therefore, it is concluded that both castor cultivars, Local and DS-30, can be used for phytoremediation of heavy metal-contaminated sites.


2020 ◽  
Author(s):  
Navjeet Kaur ◽  
Jyotsna Kaushal ◽  
Pooja Mahajan ◽  
Arun Lal Srivas

Abstract Most of the dyes are carcinogenic and mutagenic in nature. Plants are potential candidates to remediate textile dye wastewater from contaminated sites. The present study aimed toscreen potential plant species for removal of synthetic dye solution of triarylmethane dye Methylene Blue (MB) and diazo dye Congo Red (CR). Six plant species were screened for their phytoremediation ability for the removal of dyes present in synthetic wastewater. Six plants selected for screening areTrachyspermum ammi L. (T. ammi), Tagetes erecta L. (T. erecta), Hibiscus rosa-sinensis L. (H. rosa- sinensis), Chrysanthemum indicum L. (C. indicum), Bryophyllum fedtschenkoi (B. fedtschenkoi), Catharanthus roseus L. (C. roseus). The phytotreatment of dyes was done up to 40 hfortwo different concentrations of dyes 10 mg L− 1 and 20 mg L− 1. Among these plants, the maximum decolouration was obtained from T. ammi plant followed by B. fedtschenkoi plant. Both of these plants showed active growth even after the phytoremediation process. T. ammi decolourised the MB dye 99% (10 mg L− 1) and 86% (20 mg L− 1) while the decolourisation of the CR dye solution was up to 95% (10 mg L− 1) and 84% (20 mg L− 1).T. ammi found to have maximum potential among screened plants for the removal of MB and CR dye from synthetic dye solution and can be used for decolouration of synthetic dye wastewater.


Sign in / Sign up

Export Citation Format

Share Document