scholarly journals Convergence and Divergence: Signal Perception and Transduction Mechanisms of Cold Stress in Arabidopsis and Rice

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1864
Author(s):  
Xiaoshuang Wei ◽  
Shuang Liu ◽  
Cheng Sun ◽  
Guosheng Xie ◽  
Lingqiang Wang

Cold stress, including freezing stress and chilling stress, is one of the major environmental factors that limit the growth and productivity of plants. As a temperate dicot model plant species, Arabidopsis develops a capability to freezing tolerance through cold acclimation. The past decades have witnessed a deep understanding of mechanisms underlying cold stress signal perception, transduction, and freezing tolerance in Arabidopsis. In contrast, a monocot cereal model plant species derived from tropical and subtropical origins, rice, is very sensitive to chilling stress and has evolved a different mechanism for chilling stress signaling and response. In this review, the authors summarized the recent progress in our understanding of cold stress response mechanisms, highlighted the convergent and divergent mechanisms between Arabidopsis and rice plasma membrane cold stress perceptions, calcium signaling, phospholipid signaling, MAPK cascade signaling, ROS signaling, and ICE-CBF regulatory network, as well as light-regulated signal transduction system. Genetic engineering approaches of developing freezing tolerant Arabidopsis and chilling tolerant rice were also reviewed. Finally, the future perspective of cold stress signaling and tolerance in rice was proposed.

2021 ◽  
Author(s):  
Zaoxia Niu ◽  
Lijun Liu ◽  
Yuanyuan Pu ◽  
Li Ma ◽  
Junyan Wu ◽  
...  

Abstract Winter Turnip rapa (Brassica rapa L.) is a major oilseed crop in Northern China, where its production was severely affected by chilling and freezing stress. Previous studies have demonstrated that differentially accumulated proteins (DAPs) were expressed in roots and leaves under control chilling stress. In this study, the isobaric tag for relative and absolute quantification (iTRAQ) technology was performed to identify DAPs under freezing stress. Two winter rapaseed varieties, Longyou 7 (cold-tolerant) and Lenox (cold-sensitive), were used to investigated morphological, physiological, cell and protein levels in the shoot apical meristem (SAM) of field-grown Brassica rapa to reveal the molecular mechanisms of cold stress tolerance. Compared to Lenox, Longyou 7 had a lower SAM of height, higher collar diameter. The level of malondialdehyde (MDA), SAM of height and IAA content were repressed. At the same time, compared to Lenox, the soluble sugars (SS) content, superoxide dismutase (SOD) activity, peroxidase(POD)activity, soluble protein (SP) content and collar diameter increased in Longyou 7. In total, we identified 6330 proteins, among this, 98 DAPs were expressed in L7 CK/Le CK, 107 DAPs were expressed in L7 d /Le d 183 DAPs were expressed in Le d /Le CK, 111 DAPs were expressed in L7 d /L7 CK. Quantitative real-time PCR (RT-qPCR) analysis of the coding genes for seventeen randomly selected DAPs were performed for validation. These DAPs were identified from the two winter rapa seed cultivars involved in the biological process, cellular component and molecular function analysis, which revealed glutathione transferase activity, carbohydrate-binding, and glutathione binding, glutathione metabolic process and response IAA were closely associated with the cold stress response. Some cold-induced proteins, such as glutathione S-transferase phi 2(GSTF2), might play essential roles cold acclimation in Brassica rapa of SAM. Our work will help to provide valuable information for responding to the cold stress in Brassica rapa L.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shihang Sun ◽  
Chungen Hu ◽  
Xiujuan Qi ◽  
Jinyong Chen ◽  
Yunpeng Zhong ◽  
...  

AbstractBeta-amylase (BAM) plays an important role in plant resistance to cold stress. However, the specific role of the BAM gene in freezing tolerance is poorly understood. In this study, we demonstrated that a cold-responsive gene module was involved in the freezing tolerance of kiwifruit. In this module, the expression of AaBAM3.1, which encodes a functional protein, was induced by cold stress. AaBAM3.1-overexpressing kiwifruit lines showed increased freezing tolerance, and the heterologous overexpression of AaBAM3.1 in Arabidopsis thaliana resulted in a similar phenotype. The results of promoter GUS activity and cis-element analyses predicted AaCBF4 to be an upstream transcription factor that could regulate AaBAM3.1 expression. Further investigation of protein-DNA interactions by using yeast one-hybrid, GUS coexpression, and dual luciferase reporter assays confirmed that AaCBF4 directly regulated AaBAM3.1 expression. In addition, the expression of both AaBAM3.1 and AaCBF4 in kiwifruit responded positively to cold stress. Hence, we conclude that the AaCBF-AaBAM module is involved in the positive regulation of the freezing tolerance of kiwifruit.


2021 ◽  
Vol 34 (1) ◽  
pp. 37-46
Author(s):  
Claudia Rossig ◽  
Liam Le Lievre ◽  
Sarah M. Pilkington ◽  
Lynette Brownfield

Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 494 ◽  
Author(s):  
Xiaokang Zhuo ◽  
Tangchun Zheng ◽  
Zhiyong Zhang ◽  
Yichi Zhang ◽  
Liangbao Jiang ◽  
...  

NAC transcription factors (TFs) participate in multiple biological processes, including biotic and abiotic stress responses, signal transduction and development. Cold stress can adversely impact plant growth and development, thereby limiting agricultural productivity. Prunus mume, an excellent horticultural crop, is widely cultivated in Asian countries. Its flower can tolerate freezing-stress in the early spring. To investigate the putative NAC genes responsible for cold-stress, we identified and analyzed 113 high-confidence PmNAC genes and characterized them by bioinformatics tools and expression profiles. These PmNACs were clustered into 14 sub-families and distributed on eight chromosomes and scaffolds, with the highest number located on chromosome 3. Duplicated events resulted in a large gene family; 15 and 8 pairs of PmNACs were the result of tandem and segmental duplicates, respectively. Moreover, three membrane-bound proteins (PmNAC59/66/73) and three miRNA-targeted genes (PmNAC40/41/83) were identified. Most PmNAC genes presented tissue-specific and time-specific expression patterns. Sixteen PmNACs (PmNAC11/19/20/23/41/48/58/74/75/76/78/79/85/86/103/111) exhibited down-regulation during flower bud opening and are, therefore, putative candidates for dormancy and cold-tolerance. Seventeen genes (PmNAC11/12/17/21/29/42/30/48/59/66/73/75/85/86/93/99/111) were highly expressed in stem during winter and are putative candidates for freezing resistance. The cold-stress response pattern of 15 putative PmNACs was observed under 4 °C at different treatment times. The expression of 10 genes (PmNAC11/20/23/40/42/48/57/60/66/86) was upregulated, while 5 genes (PmNAC59/61/82/85/107) were significantly inhibited. The putative candidates, thus identified, have the potential for breeding the cold-tolerant horticultural plants. This study increases our understanding of functions of the NAC gene family in cold tolerance, thereby potentially intensifying the molecular breeding programs of woody plants.


Antioxidants ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 169 ◽  
Author(s):  
Anna Dreyer ◽  
Karl-Josef Dietz

Cold temperatures restrict plant growth, geographical extension of plant species, and agricultural practices. This review deals with cold stress above freezing temperatures often defined as chilling stress. It focuses on the redox regulatory network of the cell under cold temperature conditions. Reactive oxygen species (ROS) function as the final electron sink in this network which consists of redox input elements, transmitters, targets, and sensors. Following an introduction to the critical network components which include nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductases, thioredoxins, and peroxiredoxins, typical laboratory experiments for cold stress investigations will be described. Short term transcriptome and metabolome analyses allow for dissecting the early responses of network components and complement the vast data sets dealing with changes in the antioxidant system and ROS. This review gives examples of how such information may be integrated to advance our knowledge on the response and function of the redox regulatory network in cold stress acclimation. It will be exemplarily shown that targeting the redox network might be beneficial and supportive to improve cold stress acclimation and plant yield in cold climate.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fangliu Yin ◽  
Youling Zeng ◽  
Jieyun Ji ◽  
Pengju Wang ◽  
Yufang Zhang ◽  
...  

The APETALA2 (AP2) and ethylene-responsive element-binding factor (ERF) gene family is one of the largest plant-specific transcription factor gene families, which plays a critical role in plant development and evolution, as well as response to various stresses. The TARGET OF EAT3 (TOE3) gene is derived from Halostachys caspica and belongs to the AP2 subfamily with two AP2 DNA-binding domains. Currently, AP2 family mainly plays crucial roles in plant growth and evolution, yet there are few reports about the role of AP2 in abiotic stress tolerance. Here, we report HcTOE3, a new cold-regulated transcription factor gene, which has an important contribution to freezing tolerance. The main results showed that the expression of HcTOE3 in the H. caspica assimilating branches was strongly induced by different abiotic stresses, including high salinity, drought, and extreme temperature (heat, chilling, and freezing), as well as abscisic acid and methyl viologen treatments. Overexpressing HcTOE3 gene (OE) induced transgenic Arabidopsis plant tolerance to freezing stress. Under freezing treatment, the OE lines showed lower content of malondialdehyde and electrolyte leakage and less accumulation of reactive oxygen species compared with the wild type. However, the survival rates, antioxidant enzyme activities, and contents of osmotic adjustment substance proline were enhanced in transgenic plants. Additionally, the OE lines increased freezing tolerance by up-regulating the transcription level of cold responsive genes (CBF1, CBF2, COR15, COR47, KIN1, and RD29A) and abscisic acid signal transduction pathway genes (ABI1, ABI2, ABI5, and RAB18). Our results suggested that HcTOE3 positively regulated freezing stress and has a great potential as a candidate gene to improve plant freezing tolerance.


Author(s):  
Earl B. Alexander ◽  
Roger G. Coleman ◽  
Todd Keeler-Wolfe ◽  
Susan P. Harrison

Ultramafic, or colloquially “serpentine,” rocks and soils have dramatic effects on the vegetation that grows on them. Many plants cannot grow in serpentine soils, leaving distinctive suites of plants to occupy serpentine habitats. Plants that do grow on serpentine soils may be stunted, and plant distributions are commonly sparse relative to other soils in an area. Plant communities on serpentine soils are usually distinctive, even if one does not recognize the plant species. Because of these distinctive features, ultramafic rocks and serpentine soils are of special interest to all observers of landscapes. Geology underlies both conceptually and literally the distinctive vegetation on serpentine soils. The occurrence of special floras on particular substrates within particular regions makes rocks and soils of key significance to plant evolution and biogeography. Sophisticated interpretations of these interrelationships require a combined knowledge of geology, soils, and botany that few people possess. Even highly specialized professionals generally lack the requisite expertise in all three disciplines. The science of ecology, which in principle concerns interactions among all aspects of the environment, seldom incorporates a deep understanding of rocks and soils. Some scientists have attempted to bridge this gap through creating a discipline known as geoecology (Troll 1971, Huggett 1995), which forms the basis for our interdisciplinary exploration of serpentine rocks and soils in western North America. The term “serpentine” is applied in a general sense to all ultramafic rocks, soils developed from them, and plants growing on them. Ultramafic rocks are those with very high magnesium and iron concentrations. The word serpentine is derived from the Latin word serpentinus, meaning “resembling a serpent, or a serpent’s skin,” because many serpentine rocks have smooth surfaces mottled in shades of green to black. The distinctive chemistry of ultramafic rocks and serpentine soils restricts the growth of many plants and makes them refuges for plants that thrive in serpentine habitats, including serpentine endemics (species that are restricted to these soils) and other species that have evolved means of tolerating these habitats. Often the means of tolerance include visible adaptations such as slow growth and relatively thick, spiny foliage.


Sign in / Sign up

Export Citation Format

Share Document