scholarly journals Identification of New Proteins and Potential Mitochondrial F1F0-ATPase Inhibitor Factor 1-Associated Mechanisms in Arabidopsis thaliana Using iTRAQ-Based Quantitative Proteomic Analysis

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2385
Author(s):  
Cuiting Chen ◽  
Yiqing Meng ◽  
Zhongyuan Hu ◽  
Jinghua Yang ◽  
Mingfang Zhang

The mitochondrial synthesis of ATP makes a vital contribution to the growth and development of biological organisms, in which the enzyme mitochondrial F1F0-ATP synthase plays a pivotal role, in that it can either synthesize or hydrolyze cellular ATP. The finding of our previous study revealed that mitochondrial F1F0-ATPase inhibitor factor 1 (IF1) in Arabidopsis thaliana has a conserved function as an endogenous inhibitor affecting cellular energy status and plays an important role in plant growth and reproduction, particularly in fertility. In this study, to gain an insight into IF1-related traits, we performed isobaric tags for relative and absolute quantitation labeling analysis. In total, 67 of 4778 identified proteins were identified as differentially expressed proteins (DEPs; 59 up-regulated and 8 down-regulated) between wild-type and if1 mutant Arabidopsis thaliana seedlings. Gene ontology enrichment analysis revealed that these DEPs were the most significantly enriched in pathways such as “long-day photoperiodism, flowering,” “positive regulation of protein import into chloroplast stroma,” and “pollen sperm cell differentiation,” which are closely associated with reproductive development. Moreover, Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that photosynthesis was the pathway most significantly enriched with DEPs. Collectively, our results revealed a global shift in protein abundance patterns corresponding to AtIF1 mutation, entailing changes in the abundance of multiple key proteins and metabolic processes, which will provide a valuable proteomic foundation for future studies.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Na Cheng ◽  
Hao Wang ◽  
Weizong Zhang ◽  
Heng Wang ◽  
Xiang Jin ◽  
...  

Acute aortic dissection (AAD) is a catastrophic cardiovascular disease with high disability and mortality due to multiple fatal complications. However, the molecular changes of the serum proteome after AAD are not very clear. Here, we performed isobaric tags for relative and absolute quantitation- (iTRAQ-) based comparative proteomic analysis to investigate the proteome profile changes after AAD by collecting plasma samples from 20 AAD patients and 20 controls. Out of the 345 identified proteins, 266 were considered as high-quality quantified proteins (95%confident peptides≥2), of which 25 proteins were accumulated and 12 were reduced in AAD samples. Gene ontology enrichment analysis showed that the 25 AAD-accumulated proteins were enriched in high-density lipoprotein particles for the cellular component category and protein homodimerization acidity for the molecular function category. Protein-protein interaction network analysis showed that serum amyloid A proteins (SAAs), complement component proteins, and carboxypeptidase N catalytic chain proteins (CPNs) possessed the key nodes of the network. The expression levels of six selected AAD-accumulated proteins, B2-GP1, CPN1, F9, LBP, SAA1, and SAA2, were validated by ELISA. Moreover, ROC analysis showed that the AUCs of B2-GP1 and CPN1 were 0.808 and 0.702, respectively. Our data provide insights into molecular change profiles in proteome levels after AAD and indicate that B2-GP1 and CPN1 are potential biomarkers for AAD.


2020 ◽  
Vol 254 ◽  
pp. 153264
Author(s):  
Cuiting Chen ◽  
Yiqing Meng ◽  
Jannat Shopan ◽  
James Whelan ◽  
Zhongyuan Hu ◽  
...  

2020 ◽  
Vol 23 (7) ◽  
pp. 649-657
Author(s):  
Dong-Jiang Liao ◽  
Xi-Ping Cheng ◽  
Nan Li ◽  
Kang-Li Liang ◽  
Hui Fan ◽  
...  

Aim and Objective: Lupus nephritis (LN) is one of the major complications of systemic lupus erythematosus (SLE). The specific mechanisms of pathogenesis, aggravation, and remission processes in LN have not been clarified but is of great need in the clinic. Using isobaric tags for relative and absolute quantitation (iTRAQ) technology to screen the functional proteins of LN in mice. Especially under intervention factors of lipopolysaccharide (LPS) and dexamethasone. Methods: Mrl-lps mice were intervened with LPS, dexamethasone, and normal saline (NS) using intraperitoneal injection, and c57 mice intervened with NS as control. The anti-ANA antibody enzyme-linked immunosorbent assay (ELISA) was used to verify disease severity. Kidney tissue is collected and processed for iTRAQ to screen out functional proteins closely related to the onset and development of LN. Western blot method and rt-PCR (real-time Polymerase Chain Reaction) were used for verification. Results: We identified 136 proteins that marked quantitative information. Among them, Hp, Igkv8-27, Itgb2, Got2, and Pcx proteins showed significant abnormal manifestations. Conclusion: Using iTRAQ methods, the functional proteins Hp, Igkv8-27, Itgb2, Got2, and Pcx were screened out for a close relationship with the pathogenesis and development of LN, which is worth further study.


1990 ◽  
Vol 22 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Tadao Hashimoto ◽  
Yukuo Yoshida ◽  
Kunio Tagawa

2014 ◽  
Vol 2 (4) ◽  
pp. 464-477
Author(s):  
Zilun Shi ◽  
Chris Dawson ◽  
Stephen L.W. On ◽  
Malik Altaf Hussain

A proteome map of the foodborne pathogen Campylobacter jejuni NCTC11168 was analyzed using a state-of-the-art gel-free proteomic approach for the first time. A whole cell protein extract was prepared from the C. jejuni strain NCTC11168 grown in brain heart infusion (BHI) broth at 42°C under microaerobic conditions. A gel-free technique using isobaric tags for relative and absolute quantitation (iTRAQ) was employed to create a protein expression profile of the strain. Liquid chromatography-mass spectrometry (LC-MS/MS) was used to identify the proteins. Protein functionalities were searched to classify them. A total of 235 proteins were identified in the whole cell protein fraction of C. jejuni NCTC11168 cells using iTRAQ analysis. Functional grouping of the identified proteins showed that forty percent of these proteins were associated with energy metabolism, protein synthesis and genetic information processing. iTRAQ was faster, easier and proved more sensitive than two-dimensional gel-based proteomics approaches previously applied to C. jejuni, making it an attractive tool for further studies of cellular physiological response. DOI: http://dx.doi.org/10.3126/ijasbt.v2i4.11253  Int J Appl Sci Biotechnol, Vol. 2(4): 464-477 


Sign in / Sign up

Export Citation Format

Share Document