scholarly journals Biological Control of Charcoal Rot in Peanut Crop through Strains of Trichoderma spp., in Puebla, Mexico

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2630
Author(s):  
Saira Jazmín Martínez-Salgado ◽  
Petra Andrade-Hoyos ◽  
Conrado Parraguirre Lezama ◽  
Antonio Rivera-Tapia ◽  
Alfonso Luna-Cruz ◽  
...  

Charcoal rot is an emerging disease for peanut crops caused by the fungus Macrophomina phaseolina. In Mexico, peanut crop represents an important productive activity for various rural areas; however, charcoal rot affects producers economically. The objectives of this research were: (a) to identify and morphologically characterize the strain “PUE 4.0” associated with charcoal rot of peanut crops from Buenavista de Benito Juárez, belonging to the municipality of Chietla in Puebla, Mexico; (b) determine the in vitro and in vivo antagonist activity of five Trichoderma species on M. phaseolina, and (c) determine the effect of the incidence of the disease on peanut production in the field. Vegetable tissue samples were collected from peanut crops in Puebla, Mexico with the presence of symptoms of charcoal rot at the stem and root level. The “PUE 4.0” strain presented 100% identity with M. phaseolina, the cause of charcoal rot in peanut crops from Buenavista de Benito Juárez. T. koningiopsis (T-K11) showed the highest development rate, the best growth speed, and the highest percentage of radial growth inhibition (PIRG) over M. phaseolina (71.11%) under in vitro conditions, in addition, T. koningiopsis (T-K11) showed higher production (1.60 ± 0.01 t/ha−1) and lower incidence of charcoal rot under field conditions. The lowest production with the highest incidence of the disease occurred in plants inoculated only with M. phaseolina (0.67 ± 0.01 t/ha−1) where elongated reddish-brown lesions were observed that covered 40% of the total surface of the main root.

2019 ◽  
Vol 31 (1) ◽  
pp. 55-66
Author(s):  
Ramadan A. Bakr ◽  
Abdullah S. Hamad

A survey was carried out to know the occurrence of charcoal rot disease of strawberry caused by Macrophomina phaseolina in different selected locations representing different soil types during the growing season of strawberry in Badr and Kom Hamada Districts in El-Behira governorate, Egypt. Also, the effect of five chemical fungicides at five concentrations was determined in vitro and in vivo experiments against M. phaseolina compared to the control. A total of 69 strawberry samples collected from farmer’s fields. Disease incidence (DI) and percentage of disease incidence (PDI) and disease index were recorded. Results revealed that percentage of disease incidence varies among the surveyed locations. Macrophomina phaseolina isolates M3 and M4 were the most destructive isolates. Results indicate that the selected Four strawberry cultivars showed different susceptibility to charcoal rot and Festival was the high susceptible cultivar. Our findings revealed that at 100 ppm concentration the most of the fungicides used inhibited the M. phaseolina mycelium growth, however the higher rate was recorded with Sendo by 91.95 % followed by 91.12% in Rhizolex-T and the least rate was recorded with Ridomil gold plus by 31.67%. At 200 ppm Rhizolex-T gave the highest inhibition by 96.67%, followed by Sendo and Sandcur by 95.96 and 95.00 % respectively while Ridomil gold plus gave the least inhibition rate by 43.06%.Results illustrated that use of fungicides markedly increased the survival of strawberry plants. The highest plant survival percentage was recorded with Rhizolex-T by 80% followed Sendo by 60%, while least plants survival percentage was recorded with Ridomil gold plus by10% compared with infected untreated control.


2018 ◽  
Vol 84 (0) ◽  
Author(s):  
Eloísa Lorenzetti ◽  
José Renato Stangarlin ◽  
Odair José Kuhn

ABSTRACT: The aim of this study was to evaluate the control of charcoal rot in soybeans using Sepia and Arsenicum album homeopathic solutions in dynamizations of 6, 12, 24, 36 and 48CH (hahnemanian centesimal scale), in addition to verify the antimicrobial activity of these treatments against Macrophomina phaseolina. Additional treatments were also used, including distilled water and a hydroalcoholic solution of 30% ethanol. In vitro tests were performed to analyze the number of micro-sclerotia and the mycelial growth of the fungus. In vivo assays were used to evaluate the progress of the disease and the size of the lesions. For the area under the mycelial growth curve (AUMGC), A. album had no effect, however, Sepia reduced up to 32% of the fungal growth. For micro-sclerotia there was no statistical difference. For the area under the disease progress curve (AUDPC), both Sepia and A. album in 24CH dynamization reduced fungal growth up to 50% and 70% in the first and second assays, respectively, compared to control treatments. These results indicate the potential of these homeopathic drugs for controlling soybean charcoal rot.


Plant Disease ◽  
2021 ◽  
Author(s):  
Huijie Wu ◽  
Chaohan Li ◽  
Chakraborti Priyanka ◽  
Zhen Guo ◽  
Bin Peng ◽  
...  

In June 2018 and 2019, charcoal rot-like symptoms and black microsclerotia suggestive of Macrophomina phaseolina infection were observed on the basal stems of citrullus lanatus cv. ‘Zaojia’, causing premature death. About 1 hectare of ‘Zaojia’ had been investigated, disease incidence rates were almost 50%, resulting in a 40% yield loss in a single field in Shanghai, China (31°23′N , 121°33′E). A fungus was consistently isolated from infected watermelon tissues. In total, 30 cuttings from 10 infected seedlings were surface disinfected with 3% sodium hypochlorite for 3 min, washed thrice with sterile distilled water, air dried, and transferred onto potato dextrose agar (PDA). Dishes were incubated for 3 days at 27°C in the dark. Twenty four single hypha subcultures were obtained from these samples and were cultured for an additional 5 days at 27°C. Colonies were initially white, and then became grey black (Fig.1A). During the more advanced stages of infection, black microsclerotia were produced that were spherical or ovoid in shape (Fig.1B). No sexual structures and conidia developed during culture on PDA. Isolate pathogenicity was assessed both in vitro and in vivo. Watermelon plants (cv. ‘Zaojia’) were grown in growth chambers at 28°C (day) and 23°C (night), with a 16 h photoperiod. When seedlings were 20 days old, they were inoculated. Briefly, a needle was used to puncture watermelon stems, and 5 mm agar plugs containing actively growing mycelia were placed on these needle wounds, followed by culture for 72 h at 27°C in a dark, humid chamber. In total, 10 seedlings were inoculated with 5 mm blank PDA, and the experiment was repeated three times, with the treatment being perfomed as described above. Seedling stems were inoculated 1-2 cm above the ground by puncturing them with a needle and then transferring 5 mm agar plugs containing fungi onto the wound sites. Seedlings were kept 75% humidity and then grown for 5 days at 27°C. Ten seedlings were inoculated per experiment. As a control, 10 seedlings were inoculated with 5 mm blank PDA plugs. Experiments were repeated three times. Necrotic spots around the wounds were evident on inoculated stems at 72 h (Fig.1C). Similarly, vascular tissue necrosis and the collapse of the surrounding pith and epidermis were observed on the residual parts of seedling stems after 5 days (Fig.1E), whereas control stems did not exhibit any disease related symptoms (Fig.1D, 1F). The same pathogen was then successfully re-isolated and was successfully regrown in pure culture, thus fulfilling Koch’s postulates. To identify the causative pathogen, total mycelial DNA was isolated via the CTAB method (Brandfass & Karlovsky, 2008), and the internal transcribed spacer (ITS) rDNA regions were amplified using the ITS1/ITS4 primers (White, 1990), the genus-specific MPKFI//span>MpKRI primers were used for further amplification (Babu et al., 2007). M. phaseolina ITS sequences in this study shared 100% similarity with the ITS sequences of M. phaseolina from Chickpea (MK757624.1). Genus-specific sequences from this isolate shared 100% homology with other M. phaseolina isolates (MT645816.1 and MN263167.1). As such, M. phaseolina was confirmed to be the pathogen responsible for watermelon charcoal rot in the present report, which resulted in the death of infected watermelons before maturity, causing fruits to lose their commodity value. This report is the first to our knowledge to identify M. phaseolina as a causal pathogen of watermelon charcoal rot in China.


2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


2020 ◽  
Vol 7 (03) ◽  
Author(s):  
PREM PANDEY ◽  
G. C. SAGAR ◽  
SUNDARMAN SHRESTHA2 ◽  
HIRAKAJI MANANDHAR ◽  
RITESH K. YADAV ◽  
...  

Nine isolates of Trichoderma spp. were isolated from different agro- ecological regions of Nepal viz; Jumla, Palpa, Chitwan, Tarahara, Banke, Illam and Salyan and screened against Sclerotium rolfsii Sacc. Adreded soil borne phytopathogen causing collar rot of chickpea in chickpea; In-vitro efficacy of nine fungal antagonist (Trichoderma spp.) against Sclerotium rolfsii were screened. Pot experiment was done to find out the effective management of S. rolfsi through Tricoderma using different methods i.e. Seed treatment, soil drenching and soil application. All the tested isolates of Trichoderma spp. were found effective on mycelial growth inhibition and sclerotial parasitization of S. rolfsii. Trichoderma isolated from Palpa district showed maximum growth inhibition (%) of pathogen periodically after 48(93.78%), 72(96.00%), 96(97.96%) and 120(100.00%) hours of inoculation. Parasitized sclerotium showed minimum sclerotial germination on agar plates. Moreover, Trichoderma species isolated from Palpa districts showed second best percent mycelial growth inhibition periodically at 72(25.00%), 120(29.16%), 168(29.16%) and 216(29.16%).In pot experiment at 40 days after sowing, Seedling height was maximum in soil drenching with 30g per 100ml of water (22.27cm) and Mortality percentage of seedlings was least or highest disease control was observed in seed treated with 109cfu/ml (0.000%).


2014 ◽  
Vol 40 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Zayame Vegette Pinto ◽  
Matheus Aparecido Pereira Cipriano ◽  
Amaury da Silva dos Santos ◽  
Ludwig Heinrich Pfenning ◽  
Flávia Rodrigues Alves Patrício

Bottom rot, caused by Rhizoctonia solani AG 1-IB, is an important disease affecting lettuce in Brazil, where its biological control with Trichoderma was not developed yet. The present study was carried out with the aim of selecting Trichoderma isolates to be used in the control of lettuce bottom rot. Forty-six Trichoderma isolates, obtained with baits containing mycelia of the pathogen, were evaluated in experiments carried out in vitro and in vivo in a greenhouse in two steps. In the laboratory, the isolates were evaluated for their capabilities of parasitizing and producing toxic metabolic substances that could inhibit the pathogen mycelial growth. In the first step of the in vivo experiments, the number and the dry weight of lettuce seedlings of the cultivar White Boston were evaluated. In the second step, 12 isolates that were efficient in the first step and showed rapid growth and abundant sporulation in the laboratory were tested for their capability of controlling bottom rot in two repeated experiments, and had their species identified. The majority of the isolates of Trichoderma spp. (76%) showed high capacity for parasitism and 50% of them produced toxic metabolites capable of inhibiting 60-100% of R. solani AG1-IB mycelial growth. Twenty-four isolates increased the number and 23 isolates increased the dry weight of lettuce seedlings inoculated with the pathogen in the first step of the in vivo experiments.In both experiments of the second step, two isolates of T. virens, IBLF 04 and IBLF 50, reduced the severity of bottom rot and increased the number and the dry weight of lettuce seedlings inoculated with R. solani AG1-IB. These isolates had shown a high capacity for parasitism and production of toxic metabolic substances, indicating that the in vitro and in vivo steps employed in the present study were efficient in selecting antagonists to be used for the control of lettuce bottom rot.


2017 ◽  
Vol 52 (12) ◽  
pp. 1140-1148 ◽  
Author(s):  
Patrícia Elias Haddad ◽  
Luis Garrigós Leite ◽  
Cleusa Maria Mantovanello Lucon ◽  
Ricardo Harakava

Abstract: The objective of this work was to evaluate, in vitro and in vivo, the potential of Trichoderma spp. strains to control Sclerotinia sclerotiorum in soybeans (Glycine max) and to perform the molecular identification of the best perfoming strains. The effect of 120 strains of Trichoderma spp. on the viability of S. sclerotiorum sclerotia was evaluated in vitro through immersion in suspension of conidia from the antagonists and plating in culture medium. The best performing strains were evaluated in vivo, in a greenhouse, for control of the pathogen inoculated on 'Pintado' soybean seeds and plants. Of the 120 strains tested in vitro, 22 strains of Trichoderma spp. caused 100% inhibition of sclerotia germination. In the greenhouse, five strains inhibited the negative effect of the pathogen on seed germination and two strains increased in up to 67% plant dry matter. The best performing strains were identified as T. koningiopsis (3 strains), T. asperelloides (3), T. atroviride (2), and T. virens (1). Trichoderma strains are able to protect soybean plants from the harmful effect of S. sclerotiorum and, at the same time, they can promote the growth of the aerial part in greenhouse conditions.


2021 ◽  
Vol 9 (09) ◽  
pp. 489-497
Author(s):  
Priyanka D. Mundhe ◽  
◽  
Balasaheb S. Pawade ◽  
Indrasen G. Waykar ◽  
Innus K. Shaikh ◽  
...  

Snakebite is a life-threatening medical emergency, and globally responsible for millions of deaths. In snakebites accidents only deaths are not a concern, it leads to more morbidities. Due to scanty healthcare facilities in rural areas of India, many people seek alternative treatment available in ethnic practices. Tamarindus Indica (TI) plant is rich in medicinal value and used to treat many diseases including snakebite treatment traditionally. In view of this TI seed coat extract (TISCE) was evaluated for antivenom activity. The phytochemical screening of TISCE was performed to understand its chemical composition. TISCE was evaluated for antivenom activity against Indian cobra venom (ICV), common krait venom (CKV), Russells viper venom (RVV), and saw-scaled viper venom (SCV) for phospholipase A2 (PLA-2), haemorrhagic in vitro and in vivo, procoagulant, proteolytic activity, and lethality studies. TISCE majorly contains saponins, glycosides, alkaloids, and phenolic compounds. Minimum indirect haemorrhagic dose (MIHD) observed for ICV (12.5 µg), CKV (5.0 µg),RVV (10.0 µg), and SVV (12.5 µg). TISCE inhibits the procoagulant activity of all venoms at a concentration of 18.0 µg. It also shows the neutralization of proteolytic enzymes of venom in a dose-dependent manner. A pre-incubated mixture containing five lethal dose 50 (LD50) of venom and TISCE was injected intravenously, all mice survived as venom neutralized by TISCE. The present study demonstrates the ability of TISCE to neutralize snake venom using suitable in vivo and in vitro methods. Further studies required to unravelling the specific active chemical constituent of TISCE that may used as novel alternative snakebite treatment. TISCE was able to prolong the deaths during the simulation study and may be used in the topical pharmaceutical formulation that will reduce local venom reactions causing much morbidity, which will collectively with Anti-snake venom (ASV), used to treat envenomed patients more effectively.


Author(s):  
Kevison Romulo da Silva França ◽  
Flavia Mota de Figueredo Alves ◽  
Tiago Silva Lima ◽  
Alda Leaby dos Santos Xavier ◽  
Plínio Tércio Medeiros de Azevedo ◽  
...  

This study evaluates the in vitro effects of Lippia gracilis essential oil on the mycelial growth of phytopathogenic fungi. Experiments were carried out using a completely randomized design to assess the effects of eight treatments. Five replicates were evaluated for each experimental group. The essential oil was incorporated into the potato dextrose culture medium and poured into Petri dishes. Treatments were comprised of different concentrations of the oil (0.0125, 0.025, 0.05, 0.1, and 0.2%), a negative control (0.0%), and two positive controls (commercial fungicides). The plates were inoculated with fungi including Colletotrichum gloeosporioides, C. musae, C. fructicola, C. asianum, Alternaria alternata, A. brassicicola, Fusarium solani, F. oxysporum f. sp. cubense, and Lasiodiplodia theobromae and were incubated for seven days at 27 ± 2°C. The following variables were measured to verify the differences observed among treatments: percentage of mycelial growth inhibition and index of mycelial growth speed. All concentrations of L. gracilis oil inhibited the mycelial growth of the fungal species evaluated. The complete inhibition was observed between concentrations of 0.0125 and 0.1%. Treatment with oil inhibited fungal growth with similar, or even greater, efficiency than commercial fungicides.. We recommend the development of in vivo tests to verify whether L. gracilis essential oil can protect against fungal disease in live plants.


2019 ◽  
Vol 109 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Sebastián Reznikov ◽  
María A. Chiesa ◽  
Esteban M. Pardo ◽  
Vicente De Lisi ◽  
Noelia Bogado ◽  
...  

Charcoal rot, caused by the fungus Macrophomina phaseolina, is an economically important disease of soybean (Glycine max) worldwide. Objectives of the present research were to (i) study the genetic and pathogenic diversity in a collection of M. phaseolina isolates from Argentina and Paraguay and (ii) develop an improved in vitro phenotyping method to evaluate disease response of soybean genotypes to M. phaseolina isolates. Cluster analysis showed no clear association among simple sequence repeat profiles, year of collection, pathogenicity, and geographical origin of the isolates from Argentina and Paraguay. Subsequently, the response of four soybean genotypes against seven M. phaseolina isolates was evaluated in the field and the results were confirmed using the in vitro assay developed. This assay, which is based on root disease development on soybean seedlings, allowed the detection of a differential level of aggressiveness among the isolates on four soybean genotypes. The results suggest the existence of specific interactions among soybean genotypes and M. phaseolina isolates. In addition, cultivar Munasqa RR showed a superior response against M. phaseolina compared with DT 97-4290 (moderately resistant), thus becoming a novel source of resistance to charcoal rot.


Sign in / Sign up

Export Citation Format

Share Document