scholarly journals Below-Ground Growth of Alpine Plants, Not Above-Ground Growth, Is Linked to the Extent of Its Carbon Storage

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2680
Author(s):  
Youfu Zhang ◽  
Tuo Chen ◽  
Hanbo Yun ◽  
Chunyan Chen ◽  
Yongzhi Liu

Understanding carbon allocation in plants is essential for explaining their growth strategies during environmental adaptation. However, the role of mobile carbon in plant growth and its response to habitat conditions is still disputed. In degraded meadow (alpine sandy grassland) and non-degraded meadow (typical alpine meadow and swamp meadow) on the Qinghai–Tibetan Plateau, we measured the monthly averages of above-ground biomass (AGB) and below-ground biomass (BGB) of the investigated species in each meadow and the average concentration of non-structural carbohydrates (NSCs), an indicator of carbon storage. Below-ground organs had higher concentrations and showed more seasonal variation in NSCs than above-ground organs. BGB had a positive correlation with below-ground NSCs levels. However, AGB had no clear relationship with above-ground NSCs levels. Plants in sandy grasslands had higher total NSC, soluble sugars, fructose, and sucrose concentrations and lower starch concentrations in below-ground organs than plants in alpine or swamp meadows. Overall, NSCs storage, particularly soluble sugars, is a major process underlying the pattern of below-ground growth, but not above-ground growth, in the meadow ecosystem of the Qinghai–Tibetan Plateau, and degraded meadow strengthens this process. These results suggest that the extent of carbon storage in non-photosynthetic organs of alpine herbs impacts their growth and habitat adaptation.

2018 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Suryono Suryono ◽  
Nirwani Soenardjo ◽  
Edi Wibowo ◽  
Raden Ario ◽  
Edi Fahrur Rozy

Ekosistem mangrove memiliki fungsi ekologis sebagai penyerap dan penyimpan karbon. Mangrove menyerap CO2 pada saat proses fotosintesis, kemudian mengubahnya menjadi karbohidrat dengan menyimpannya dalam bentuk biomassa pada akar ,pohon, serta daun. Tujuan dari penelitian ini adalah untuk mengetahui total above ground biomass, belowground biomass, simpanan karbon atas, simpanan karbon bawah, dan karbon organik pada sedimen dasar  di Hutan Mangrove Perancak, Jembrana, Bali. Sampling dilakukan dengan  metode purposive sampling dengan dasar pertimbangan berupa jenis, kerapatan serta diameter pohon mangrove. Estimasi biomassa digunakan  metode tanpa pemanenan dengan mengukur diameter at breast height (DBH, 1.3 m) mangrove. Simpanan karbon diestimasi dari 46% biomasa. Kandungan karbon organik pada sedimen diukur dengan  menggunakan metode lost on ignition (LOI). Hasil penelitian menunjukkan total above ground biomass sebesar 187,21 ton/ha, below ground biomass sebesar 125,43 ton/ha, simpanan karbon atas sebesar 86,11 ton/ha, simpanan karbon bawah sebesar 57,69 ton/ha, sedangkan  karbon organik sedimen sebesar 359,24 ton/ha. The mangrove ecosystem has ecological functions as an absorber and carbon storage. Mangrove absorbs CO2 during the process of photosynthesis, then changes it into carbohydrates bystoring it in the form of tree biomass. The aim of this research is to know the total of above ground biomass, below ground biomass, upper carbon storage, lower carbon storage, and sediment organic carbon in Perancak Mangrove Forest, Jembrana, Bali. The selection of sampling location using purposive sampling method with consideration of type, density and diameter of mangrove. The estimatorion of biomass using the method without harvesting by measuring diameter at breast height (DBH, 1.3 m) mangrove. Carbon deposits are estimated from46% of biomass. The organic carbon content of sediment was measured using the lost on ignition (LOI) method. The results showedthat  the total of above ground biomass of 187.21 ton / ha, below ground biomass 125,43 ton / ha, upper carbon store of 86,11 ton / ha, lower carbon store of 57,69 ton / ha, and organic carbon sedimen to 359.24 tons / ha.


Author(s):  
Tania Alvis-Ccoropuna ◽  
◽  
José Francisco Villasante-Benavides ◽  
Gregory Anthony Pauca-Tanco ◽  
Johana del Pilar Quispe-Turpo ◽  
...  

High Andean wetlands are important ecosystems due to their ecosystem services. Carbon storage is a result of the low decomposition rate due to flooded soils and low temperatures. Consequently, this study estimated the carbon content stored in the high Andean wetland of Chalhuanca and calculated the economic value of this service. For this purpose, 30 samples were taken at random, establishing three carbon pools: aboveground biomass (leaves and stems), belowground biomass (roots), and organic soil. The samples were obtained with an auger-type device; each sample was dried at 65°C for at least 24 hours and the carbon content was determined using the Walkey-Black method and calculations and statistical tests were performed. The total carbon stored in relation to the area of the wetland was approximately 795,415.65 tons of CO2. The fraction of carbon per sample is higher in aerial biomass (49%), followed by organic soil (43.1%) and below ground biomass. On the other hand, the amount of carbon stored differs significantly between reservoirs, since organic soil stores the highest amount with 218.3 TC/ha (90%), followed by below-ground biomass (roots) with 19.7 TC/ha (8%), and above-ground biomass (leaves and stems) with 4.8 TC/ha (2%). Finally, the ecosystem service of carbon storage amounts to a cost of 6462.18 USD/ha, 5703132.34 USD in sum.


2020 ◽  
Author(s):  
Sophie Drexler ◽  
Axel Don

<p>The establishment of hedgerows as traditional form of agroforestry in Europe is a promising strategy to promote carbon sinks in the context of climate change mitigation. However, only few studies quantified the potential of hedgerows to sequester and store carbon. We therefore conducted a meta-analysis to gain a quantitative overview about the carbon storage in the above- and below-ground biomass and soils of hedgerows.</p><p>Soil organic carbon (SOC) data of hedgerows and adjacent agricultural fields of nine studies with 83 hedgerow sites was compiled. On average, the establishment of hedgerows on cropland increased SOC by 32%. No significant differences were found between the SOC storage of hedgerows and that of grassland. The literature survey on the biomass carbon stocks of hedgerows resulted in 23 sampled hedgerows, which were supplemented by own biomass data of 49 hedgerows from northern Germany. Biomass stocks increased with time since last coppicing and hedgerow height. The mean (± SD) above-ground biomass carbon stock of the analysed hedgerows was 48 ± 29 Mg C ha<sup>-1</sup>. Below-ground biomass values seemed mostly underestimated, as they were calculated from above-ground biomass via fixed assumed root:shoot ratios not specific for hedgerows. Only one study reported measured root biomass under hedgerows with a root:shoot ratio of 0.94:1 ± 0.084. With this shoot:root ratio an average below-ground biomass carbon stock of 45 ± 28 Mg C ha<sup>-1 </sup>was estimated, but with high uncertainty.</p><p>Thus, the establishment of hedgerows on cropland could lead to a SOC sequestration of 1.0 Mg C ha<sup>-1</sup> year<sup>-1</sup> over a 20-year period. Additionally, up to 9.4 Mg C ha<sup>-1</sup> year<sup>-1</sup> could be sequestered in the hedgerow biomass over a 10 year period. In total, hedgerows store 106 ± 41 Mg C ha<sup>-1</sup> more C than croplands. Our results indicate that organic carbon stored in hedgerows is similar high as in forests. We discuss how the establishment of hedgerows, especially on cropland, can thus be an effective option for C sequestration in agricultural landscapes, meanwhile enhance biodiversity, and soil protection.</p>


2007 ◽  
Vol 86 (3-4) ◽  
pp. 375-396 ◽  
Author(s):  
Jiangwen Fan ◽  
Huaping Zhong ◽  
Warwick Harris ◽  
Guirui Yu ◽  
Shaoqiang Wang ◽  
...  

2015 ◽  
Vol 112 (23) ◽  
pp. 7213-7218 ◽  
Author(s):  
Caroline E. Farrior ◽  
Ignacio Rodriguez-Iturbe ◽  
Ray Dybzinski ◽  
Simon A. Levin ◽  
Stephen W. Pacala

Increasing atmospheric CO2 concentrations and changing rainfall regimes are creating novel environments for plant communities around the world. The resulting changes in plant productivity and allocation among tissues will have significant impacts on forest carbon storage and the global carbon cycle, yet these effects may depend on mechanisms not included in global models. Here we focus on the role of individual-level competition for water and light in forest carbon allocation and storage across rainfall regimes. We find that the complexity of plant responses to rainfall regimes in experiments can be explained by individual-based competition for water and light within a continuously varying soil moisture environment. Further, we find that elevated CO2 leads to large amplifications of carbon storage when it alleviates competition for water by incentivizing competitive plants to divert carbon from short-lived fine roots to long-lived woody biomass. Overall, we find that plant dependence on rainfall regimes and plant responses to added CO2 are complex, but understandable. The insights developed here will serve as an important foundation as we work to predict the responses of plants to the full, multidimensional reality of climate change, which involves not only changes in rainfall and CO2 but also changes in temperature, nutrient availability, and disturbance rates, among others.


2005 ◽  
Vol 53 (5) ◽  
pp. 431 ◽  
Author(s):  
B. W. T. Comley ◽  
K. A. McGuinness

Mangrove forests are an integral part of tropical coastal ecosystems, particularly in northern Australia. In the Northern Territory, studies have determined the extent and species diversity of these associations but little is known of biomass or productivity. We sampled the above- and below-ground biomass of the four most abundant species, Avicennia marina, Bruguiera exaristata, Ceriops australis and Rhizophora stylosa, developed allometric relationships and examined partitioning. Unlike many other studies, we sampled below-ground biomass, which constituted a substantial proportion (0.29–0.57) of the total dry weight. Our results should be valuable in modelling potential changes in carbon allocation resulting from small- and large-scale ecosystem changes.


2014 ◽  
Vol 2 (02) ◽  
pp. 73-82 ◽  
Author(s):  
Onofre S. Corpuz ◽  
Esmael L. Abas ◽  
For. Crissante Salibio

The study was conducted at the three Municipalities of Cotabato province Southern Philippines between January to May 2011. The study aimed at determining the Carbon budget of the different age rubber plantation through field sampling and modeling. Actual field measurement of dbh, were done for the estimation of above-below ground biomass. The major carbon pools, such as above-ground biomass, below-ground biomass, litter and understory vegetation were added and multiplied with 45% default value by IPCC to obtained the carbon density in Mt/ha. The total estimated biomass of the rubber plantation in Antipas were 103.91Mt/ha (10 years) and 573.21Mt/ha (20 years) with carbon density of 46.79Mt/ha and 257.95mt/ha respectively. For the Arakan plantation, the following were revealed in the estimation: (a). the 40 year plantation has total biomass of 1041.54Mt/ha biomass (468.69Mt/ha C), (b). the 11 year plantation has 158.79Mt/ha biomass (71.46Mt/ha C), (c). the 35 year plantation has total biomass of 246.23Mt/ha (110.8Mt/ha Carbon density), and (d). the 12 year plantation has 355.60Mt/ha biomass (160.02Mt/ha C). In Matalam Cotabato, the two different age rubber plantations has an estimated biomass density of 149.47Mt/ha in 8 years with 67.26 Mt/ha C and 70.82Mt/ha biomass density for the 6 year old plantation with 31.87 Mt/ha C.The soil organic carbons found in each plantation were: Antipas; 100.25t/ha (10 years) and 203.54t/ha (20 years), Arakan; 202.55t/ha (40 years), 142.67t/ha (11 years), 86.1t/ha (35 years) and 129.53t/ha (12 years), Matalam; 53.32t/ha (8 years) and 62.04t/ha in the 6 year plantation. T-test reveals significant differences of the biomass and carbon density of the rubber plantation with respect to age range (6-12 years and 20-40 years). This implies that biomass production and carbon storage potentials of rubber plantation is very much dependent on plantation age. Pearson regressioncorrelation analysis of the carbon density of each plantation with carbon pools found to be highly significant.


Sign in / Sign up

Export Citation Format

Share Document