scholarly journals Antidiarrheal and Cardio-Depressant Effects of Himalaiella heteromalla (D.Don) Raab-Straube: In Vitro, In Vivo, and In Silico Studies

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 78
Author(s):  
Fatima Saqib ◽  
Faisal Usman ◽  
Shehneela Malik ◽  
Naheed Bano ◽  
Najm Ur-Rahman ◽  
...  

Himalaiella heteromalla (D.Don) Raab-Straube is a commonly used remedy against various diseases. Crude extract and fractions of H. heteromalla were investigated for a gastrointestinal, bronchodilator, cardiovascular, and anti-inflammatory activities. H. heteromalla crude extract (Hh.Cr) relaxed spontaneous contractions and K+ (80 mM)-induced contraction in jejunum tissue dose-dependently. The relaxation of K+ (80 mM) indicates the presence of Ca++ channel blocking (CCB) effect, which was further confirmed by constructing calcium response curves (CRCs) as they caused rightward parallel shift of CRCs in a manner comparable to verapamil, so the spasmolytic effect of Hh.Cr was due to its CCB activity. Application of Hh.Cr on CCh (1 µM) and K+ (80 mM)-induced contraction in tracheal preparation resulted in complete relaxation, showing its bronchodilator effect mediated through Ca++ channels and cholinergic antagonist activity. Application of Hh.Cr on aortic preparations exhibited vasorelaxant activity through angiotensin and α-adrenergic receptors blockage. It also showed the cardio suppressant effect with negative chronotropic and inotropic response in paired atrium preparation. Similar effects were observed in in vivo models, i.e., decreased propulsive movement, wet feces, and inhibition of edema formation.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sumate Ampawong ◽  
Kanchana Kengkoom ◽  
Passanesh Sukphopetch ◽  
Pornanong Aramwit ◽  
Watcharamat Muangkaew ◽  
...  

Abstract Psoriasis is mainly caused because of inappropriate immune responses in the epidermis. Rice (Oryza sativa L.: SRNC05053-6-2) consists of anthocyanin, which exhibits strong antioxidative and anti-inflammatory properties. This study aimed to evaluate the role of this black-coloured rice crude extract in alleviating the symptoms of psoriasis using human psoriatic artificial skin and an imiquimod-induced rat psoriasis model. Psoriasis-related genes, cytokines and chemokines were examined; in addition, the antioxidative and anti-inflammatory properties and the immunohistopathological features of this condition were studied. The results showed that the rice extract reduced the severity of psoriasis by (1) decreasing the epidermal thickness, acanthosis, hyperkeratosis, epidermal inflammation and degree of apoptosis induction via caspase-3, (2) increasing the expression levels of anti-inflammatory cytokines (IL-10 and TGF-β), (3) reducing the levels of pro-inflammatory cytokines (IL-6, IL-8, IL-20, IL-22 and TNF-α), chemokines (CCL-20) and anti-microbial peptides (psoriasin and β-defensin), (4) enhancing the antioxidative property (Nrf-2), (5) downregulating the levels of psoriasis-associated genes (psoriasin, β-defensin, koebnerisin 15L and koebnerisin 15S) and (6) upregulating the levels of psoriasis-improving genes (caspase-14, involucrin and filaggrin). Thus, the extract appears to exert therapeutic effects on psoriasis through its antioxidative and immunomodulatory properties.


Author(s):  
Natarajan Kiruthiga ◽  
Govindaraj Saravanan ◽  
Chellappa Selvinthanuja ◽  
Kulandaivel Srinivasan ◽  
Thangavel Sivakumar

Background:: Diabetes mellitus is a challengeable metabolic disorder that leads to a group of complications when HbA1c level not maintained. Most of the existing drugs available in the market in long-term use may lead to serious adverse effects. Hence, current research focuses on drug development for the management of diabetes by synthesizing natural mimicking flavonoid analogues. Objective:: This study focused on the synthesis of flavanone derivatives imitating natural flavonoid core and investigated for their antidiabetic and antioxidant activity, which can help in the development of drug discovery targeting diabetic management. Methods:: The novel 2-phenyl-2,3-dihydro-chromen-4-ones were synthesized from 1,3-diphenyl-prop-2-en-1-one derivatives and characterized using UV, IR, 1HNMR, 13CNMR and mass spectroscopic techniques. Drug target site was determined using graph theoretical analysis and screened the characterized title compounds for their in-silico studies by analyzing their physiochemical properties, ADMET studies, and molecular docking analysis. Antidiabetic and free radical scavenging effects were investigated both by in-vitro (alpha-amylase inhibitory assay) and in-vivo models. Streptozotocin (STZ) induced rats were used as in-vivo models. Results and Discussion:: The α-amylase inhibitory assay showed flavanones with hydroxyl substitution HFA1-HFA7 had significant IC50 values. The test compounds (HFA3-HFA7) were investigated for their antidiabetic activity on STZ induced rats at 40 mg/kg. The blood glucose level and antioxidant enzymes were significantly restored by title compounds (HFA5, HFA4, and HFA6) with an electron-donating group such as hydroxyl, methoxy and thiophenyl group on ring B compared to glibenclamide. Conclusion:: These results suggest that naturally mimicking synthesized flavanone have antidiabetic and antioxidant properties, which can aid in the development of drug towards diabetes management.


2016 ◽  
Vol 11 (2) ◽  
pp. 414 ◽  
Author(s):  
Syeda Batool Naz ◽  
Mueen Ahmad Chaudhry ◽  
Shafeeq Ur Rahaman

<p class="Abstract">The study was aimed to validate the traditional uses of <em>Polypodium vulgare</em> in disorders associated with smooth muscle contraction and to describe its possible underlying mechanism(s) by using <em>in vitro</em> and <em>in vivo</em> experimental techniques. Rhizome’s extract of <em>P. vulgare</em> reversed the high K<sup>+ </sup>(80 mM) and carbachol (1 µM) mediated contractions in isolated rabbit jejunum (5 and 10 mg/mL), trachea (5 and 10 mg/mL) and urinary bladder (3 and 10 mg/mL), with higher potency against carbachol than high K<sup>+</sup>, similar to dicyclomine. A rightward shift in carbachol cumulative response curves was observed in the presence of crude extract (1-3 mg/mL), similar to dicyclomine. Crude extract exhibited a dose-dependent (300-500 mg/kg) protective effect against castor oil-induced diarrhea in mice. Presence of dual blacked mechanism behind the smooth muscles relaxant effect of the crude extract, unveil medicinal significance of <em>P. vulgare</em> in GIT, respiratory and urinary bladder disorders.</p><p class="Abstract"><strong>Video clip</strong></p><p class="Abstract"><a href="https://youtube.com/v/Ya9Rhtlg3bE">Tissue preparation</a>: 3 min 5 sec</p><p> </p>


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2019 ◽  
Vol 26 (16) ◽  
pp. 2974-2986 ◽  
Author(s):  
Kwang-sun Kim

Vectors are living organisms that transmit infectious diseases from an infected animal to humans or another animal. Biological vectors such as mosquitoes, ticks, and sand flies carry pathogens that multiply within their bodies prior to delivery to a new host. The increased prevalence of Vector-Borne Diseases (VBDs) such as Aedes-borne dengue, Chikungunya (CHIKV), Zika (ZIKV), malaria, Tick-Borne Disease (TBD), and scrub typhus has a huge impact on the health of both humans and livestock worldwide. In particular, zoonotic diseases transmitted by mosquitoes and ticks place a considerable burden on public health. Vaccines, drugs, and vector control methods have been developed to prevent and treat VBDs and have prevented millions of deaths. However, development of such strategies is falling behind the rapid emergence of VBDs. Therefore, a comprehensive approach to fighting VBDs must be considered immediately. In this review, I focus on the challenges posed by emerging outbreaks of VBDs and discuss available drugs and vaccines designed to overcome this burden. Research into promising drugs needs to be upgraded and fast-tracked, and novel drugs or vaccines being tested in in vitro and in vivo models need to be moved into human clinical trials. Active preventive tactics, as well as new and upgraded diagnostics, surveillance, treatments, and vaccination strategies, need to be monitored constantly if we are to manage VBDs of medical importance.


2020 ◽  
Vol 26 (35) ◽  
pp. 4362-4372
Author(s):  
John H. Miller ◽  
Viswanath Das

No effective therapeutics to treat neurodegenerative diseases exist, despite significant attempts to find drugs that can reduce or rescue the debilitating symptoms of tauopathies such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis, or Pick’s disease. A number of in vitro and in vivo models exist for studying neurodegenerative diseases, including cell models employing induced-pluripotent stem cells, cerebral organoids, and animal models of disease. Recent research has focused on microtubulestabilizing agents, either natural products or synthetic compounds that can prevent the axonal destruction caused by tau protein pathologies. Although promising results have come from animal model studies using brainpenetrant natural product microtubule-stabilizing agents, such as paclitaxel analogs that can access the brain, epothilones B and D, and other synthetic compounds such as davunetide or the triazolopyrimidines, early clinical trials in humans have been disappointing. This review aims to summarize the research that has been carried out in this area and discuss the potential for the future development of an effective microtubule stabilizing drug to treat neurodegenerative disease.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


Sign in / Sign up

Export Citation Format

Share Document